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1 The programming language X-KLAIM

X-KLAIM (eXtended KLAIM) is an experimental programming language specifically designed to
program distributed systems composed of several components interacting through multiple tuple
spaces and mobile code (possibly object-oriented). It is based on the kernel language KLAIM (Ker-
nel Language for Agent Interaction and Mobility) [De Nicola et al., 1998]. X-KLAIM extends KLAIM
with a high level syntax for processes: it provides variable declarations, enriched operations,
assignments, conditionals, sequential and iterative process composition and object-oriented fea-
tures based on mixin inheritance. The Java package KLAVA (originally presented in [Bettini et al.,
2002c]; see the KLAVA user’s manual [Bettini, 2003b]) provides the run-time system for X-KLAIM
operations, and a compiler translates X-KLAIM programs into Java programs that use KLAVA.
The structure of such framework is depicted in Figure 1. This document is based on chapters of
[Bettini, 2003a].

Before describing the basic concepts of X-KLAIM we give a very brief introduction to
KLAIM (we refer the interested reader to [De Nicola et al., 1998] and to the KLAIM web page,
http://music.dsi.unifi.it, for more complete descriptions of the formal model).

KLAIM is based on the notion of locality and relies on a Linda-like communication model.
Linda [Carriero & Gelernter, 1989b; Gelernter, 1985; Gelernter, 1989] is a coordination language
with asynchronous communication and shared memory. The shared space is named tuple space,
a multiset of tuples; These are containers of information items (called fields). There can be actual
fields (i.e., expressions, processes, localities, constants, identifiers) and formal fields (i.e., variables).
Syntactically, a formal field is denoted with !ide, where ide is an identifier.

Tuples are anonymous and content-addressable. Pattern-matching is used to select tuples in a
tuple space: two tuples match if they have the same number of fields and corresponding fields
match: a formal field matches any value of the same type, and two actual fields match only if
they are identical (but two formals never match). For instance, tuple (“foo”, “bar”, 100 + 200)
matches with (“foo”, “bar”, !Val). After matching, the variable of a formal field gets the value of
the matched field: in the previous example, after matching, Val (an integer variable) will contain
the integer value 300.

In Linda there is only one global shared tuple space; KLAIM extends Linda by handling mul-
tiple distributed tuple spaces. Tuple spaces are placed on nodes (or sites), which are part of a net.
Each node contains a single tuple space and processes in execution, and can be accessed through
its locality. There are two kinds of localities: physical localities are the identifiers through which
nodes can be uniquely identified within a net; logical localities are symbolic names for nodes. A
reserved logical locality, self, can be used by processes to refer to their execution node. Physical
localities have an absolute meaning within the net, while logical localities have a relative mean-
ing depending on the node where they are interpreted and can be thought as aliases for network
resources. Logical localities are associated to physical localities through allocation environments,
represented as partial functions. Each node has its own environment that, in particular, associates
self to the physical locality of the node.

KLAIM processes may run concurrently, both at the same node or at different nodes, and can
execute the following operations over tuple spaces and nodes:

• in(t)@l: evaluates tuple t and looks for a matching tuple t′ in the tuple space located at l.
Whenever a matching tuple t′ is found, it is removed from the tuple space. The correspond-
ing values of t′ are then assigned to the formal fields of t and the operation terminates. If no
matching tuple is found, the operation is suspended until one is available.

package Klava

Java
program

Java
program

X−Klaim
program X−Klaim

compiler

javac
compiler

Java
application Java

interpreter

Figure 1: The framework for X-KLAIM.
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• read(t)@l: differs from in(t)@l only because the tuple t′ selected by pattern-matching is not
removed from the tuple space located at l.

• out(t)@l: adds the tuple resulting from the evaluation of t to the tuple space located at l.

• eval(P)@l: spawns process P for execution at l.

X-KLAIM has a syntax that is quite similar to Pascal syntax; blocks of code are delimited by
begin end and the character ‘;’ is used as a separator for instructions and not as a terminator. This
implies that the code

begin instr1 ; instr2 end

is syntactically correct, while the following one is not:

begin instr1 ; instr2 ; end

X-KLAIM is case-insensitive for keywords, but not for variable and process names. Comments
start with the symbol # and terminate at the end of the line. An X-KLAIM program is made of
some global process definitions and some node definitions.

In the rest of this document we will describe the syntax of X-KLAIM and provide some pro-
gramming examples. The version of the language presented here differs from previous presen-
tations ([Bettini, 1998; Bettini et al., 1998; Bettini et al., 2000; Bettini et al., 2001b]) in that it relies
on the hierarchical model of KLAIM, presented in [Bettini et al., 2002a; Bettini, 2003a]. Thus,
it also provides all the primitives for explicitly dealing with node connectivity. X-KLAIM now
provides object-oriented features, i.e., object-oriented code mobility, structured via mixin-based
inheritance, according to the philosophy of MOMI [Bettini et al., 2002b; Bettini et al., 2003b].

2 Processes
The main computational unit in KLAIM and thus also in X-KLAIM is a process. The syntax of
X-KLAIM processes is shown in Table 1. A process is addressable in an X-KLAIM program through
its name, and can receive arguments and declare some local variables. Arguments are passed to
a process by value, unless ref is used for declaring a formal parameter.

Local variables of processes are declared in the declare section of the process definition. Stan-
dard base types are available (str, int, bool) as well as X-KLAIM typical types, such as loc, logloc
and phyloc for locality variables, process for process variables and ts, i.e., tuple space, for imple-
menting data structures by means of tuple spaces, e.g., lists, that can be accessed through standard
tuple space operations.

A formal parameter has simply the form<name>:<type>. A variable (resp. a list of variables
with the same type) can be declared as follows:

var <name> : <type>
var <name 1>, ..., <name n> : <type>

The same style can be used to declare a variable in the process body. A variable declared in the
declare section is visible in the whole process body, while a variable declared in the process body
is visible only in the code block where it is declared.

Constant variables are declared without specifying the type, since this is automatically in-
ferred from their values:

const s := "foo" ; # a string constant
const b := true ; # a boolean constant
const i := 1971 ; # an integer constant

Logical locality constants are declared by using the type locname; the value of such a constant is
represented by the symbol name itself.

A locality variable can be initialized with a string that will correspond to its actual
value. Logical localities are basically names, while physical localities must have the form
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RecProcDefs ::= rec id formalparams procbody
| rec id formalparams extern
| RecProcDefs ; RecProcDefs

formalParams ::= [ paramlist ]
paramlist ::= ε | id : type | ref id : type | paramlist , paramlist
procbody ::= declpart begin proc end
declpart ::= ε | declare decl
decl ::= const id := expression

| locname id
| var idlist : type
| decl ; decl

idlist ::= id | idlist , idlist
proc ::= KAction | nil

| id := expression | var id : type | proc ; proc
| if boolexp then proc else proc endif
| while boolexp do proc enddo
| forall Retrieve do proc enddo
| procCall | call id | ( proc ) | print exp

KAction ::= out( tuple )@id | eval( proc )@id | Retrieve
| go@id | newloc( id )

Retrieve ::= Block | NonBlock
Block ::= in( tuple )@id | read( tuple )@id
NonBlock ::= inp( tuple )@id | readp( tuple )@id | Block within numexp
boolexp ::= NonBlock | standard bool exp
tuple ::= expression | proc | ! id | tuple , tuple
procCall ::= id ( actuallist )
actuallist ::= ε | expression | proc | id | actuallist , actuallist
expression ::= ∗ expression | standard exp
id ::= string
type ::= int | str | loc | logloc | phyloc | process | ts | bool

Table 1: X-KLAIM process syntax. Syntax for other standard expressions is omitted.

<IP address>:<port>, so a physical locality variable has to be initialized with a string corre-
sponding to an Internet address. The type loc represents a general locality, without specifying
whether it is logical or physical, while logloc (resp. phyloc) represents a logical (resp. physical
locality). A simple form of subtyping is supplied for locality variables in that

logloc <: loc phyloc <: loc

Here are some examples of locality variable manipulations:

var l : loc;
var output : logloc;
var server : phyloc;
output := "screen";
server := "150.217.14.10:9999";
l := output; # OK: a logical locality can be assigned to a locality
l := server; # OK: a physical locality can be assigned to a locality

Locality names (logical localities) resolution does not take place automatically (differently
from previous versions); instead, it has to be explicitly invoked by putting the operator ∗ in front
of the locality that has to be evaluated:

l := ∗output; # retrieve the physical locality associated to output
out(∗output)@self; # insert the physical locality associated to output

However logical localities used as “destination” are still evaluated automatically, i.e., if the local-
ity used after the @ is a logical one, it is first translated to a physical locality.

Apart from standard KLAIM operations, X-KLAIM provides non-blocking version of the re-
trieval operations, namely readp and inp; these act like read and in, but, if no matching tuple
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if readp(!i, !j)@l and (not in("foo", !k)@self within 3000) then
out(i, j)@self

else
out(k)@self

endif

Listing 2.1: A more complex retrieval operation.

is found, they do not block the running process and simply return false. Thus these operations
can be used where a boolean expression is expected. Some versions of Linda also introduce such
operations [Carriero & Gelernter, 1989a]. These variants are useful when one wants to search for
a matching tuple in a tuple space without running the risk of blocking. For instance, readp can
be used to test whether a tuple is present in a tuple space.

Furthermore, a timeout (expressed in milliseconds) can be specified for in and read, through
the keyword within; the operation is then a boolean expression that can be tested to determine
whether the operation succeeded:

if in(!x, !y)@l within 2000 then
# ... success!

else
# ... timeout occurred

endif

Time-outs can be used when retrieving information for avoiding that processes block due to net-
work latency bandwidth or to absence of matching tuples.

These boolean expressions can be combined in order to execute more complex retrieval oper-
ations, as in the example in Listing 2.1: the if succeeds if a tuple matching (!i, ! j) is present at l
and no tuple matching ("foo", !k) is found at self within 3 seconds.

The compiler also performs some static analysis in order to check whether an identifier is ini-
tialized within a specific scope. The retrieval operations in X-KLAIM are binders for the formal
fields of their tuples in the sense that after such an operation succeeded, the identifiers used as for-
mal fields can be considered initialized. Thus, in the example in Listing 2.1, the out(i, j)@self

is correct, since in the then branch both i and j are initialized; on the contrary out(k)@self is
rejected, since the test of the if statement may have failed only because of the readp(!i, !j)@l;
thus in the else branch k may not be initialized. If or had been used, instead of and, in Listing 2.1,
then out(k)@self would have been correct in the else branch, while out(i, j)@self would
have been rejected in the then branch. The evaluation of boolean expressions in X-KLAIM is lazy.

It is often useful to iterate over all elements of a tuple space matching a specific template.
However, due to the inherent nondeterministic selection mechanism of pattern matching a sub-
sequent read (or readp) operation may repeatedly return the same tuple, even if several other
tuples match. Thus the following piece of code that aims at copying to a different node all tuples
matching (int, str) after incrementing the first element is destined to fail

while readp(!i, !s)@self do
out(i + 1, s)@l

enddo

since it could end up in an infinite loop, always modifying the same tuple. Repeatedly withdraw-
ing such a tuple with inp does not solve the problem, since, in order not to be destructive on the
original site, it would force to reinsert the withdrawn tuple, thus incurring in the same problem
as above.

For this reason X-KLAIM provides the construct forall that can be used for iterating actions
through a tuple space by means of a specific template. Its syntax is:

forall Retrieve do
proc

enddo
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We refer the reader to Table 1 for the syntax of “Retrieve”. The informal semantics of this op-
eration is that the loop body “proc” is executed each time a matching tuple is available. Even
duplicate tuples are repeatedly retrieved by the forall primitive; it is however guaranteed that
each tuple is retrieved only once. Thus, instead of the while-based code above we write:

forall readp(!i, !s)@self do
out(i + 1, s)@l

enddo

Now, if the tuple space contains three matching tuples (of which two are identical): (10, "foo"),
(10, "foo"), (20, "bar"), after the execution of the loop instruction the tuple space at l will contain
the tuples (11, "foo"), (11, "foo"), (21, "bar").

Notice however that the tuple space is not blocked when the execution of the forall is started,
thus this operation is not atomic: the set of tuples matching the template can change before the
command completes. A locked access to such tuples can be explicitly programmed. Our version
of forall is different from the one proposed in [Butcher et al., 1994] since parallel processes are
not created for each retrieved tuple (this would not be consistent with the “iterating” nature of
forall; a similar functionality could be easily achieved by using eval in the loop body). Our forall
is similar to the all variations of retrieval operations in PLinda [Anderson & Shasha, 1992].

The forall primitive has a different semantics depending on the nature of the retrieval opera-
tion: if a blocking action is used, then the process executing forall is blocked until another (never
retrieved) tuple becomes available; instead, when a nonblocking action is used, the process exits
from the forall loop and continues its execution.

The KLAVA system automatically assigns a unique identifier to each tuple; such an identifier
can be considered as a GUID (Global Unique Identifier); after the matching, the identifier of the
matching tuple is stored in the template used in the forall. The pattern matching procedure
checks the list of already retrieved tuples of the template, and guarantees that each matching tuple
be not retrieved twice. Since the list of tuples that have already been retrieved belongs to a specific
template, a subsequent forall operation, within the same process, will retrieve the same tuples of
previous forall loops, if they have not yet been removed.

Data structures can be implemented by means of the data type ts; a variable declared with
such type can be considered as a tuple space and can be accessed through standard tuple space
operations, apart from eval that would not make sense when applied to variables of type ts.
Furthermore newloc has a different semantics when applied to a variable of type ts: it empties
the tuple space.

forall is then useful for iterating through such data structures; for instance the following piece
of code transforms a list, stored in the variable list of type ts, containing data of the form (str,
int) into a list containing data of the form (int, str):

declare
var s : str;
var i : int;
var list : ts;

...
forall inp(!s, !i)@list do
out(i, s)@list

enddo

Notice that we use the non-blocking version of in, otherwise the process would be blocked when
it finished iterating through the list.

eval(P)@l starts the process P on the node at locality l; P can be either a process name (and its
arguments):

eval( P("foo", 10) )@l

or the code (i.e., the actions) of the process to be executed:

eval( in(!i)@self; out(i)@l2 )@l

Processes can also be used as tuple fields, such as in the following code:
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out( P("foo", 10), in(!i)@self; out(i)@l2 )@l

However, in this case, these processes are not started automatically at l: they are simply inserted
in its tuple space. They can be retrieved (e.g., by another process executing at l) and explicitly
evaluated:

in(!P1, !P2)@self;
eval(P1)@self;
eval(P2)@self

Thus, basically, eval provides remote evaluation functionalities, while out can be used to implement
the code on-demand paradigm.

According to the requirements made on the run-time support, code mobility may also be clas-
sified as follows [Cugola et al., 1997; Hohlfeld & Yee, 1998]:

• weak mobility: code coming from a different site can be dynamically linked;

• strong mobility: a thread can move its code and execution state to a different site and resume
its execution on arrival;

• full mobility: in addition to strong mobility, the whole state of the running program is moved,
and this includes all threads’ stacks, namespaces (e.g., I/O descriptors, file-system names)
and other resources, so that migration is completely transparent.

Full mobility can be considered orthogonal to mobile agents and requires a strong support
from the operating system layer. Strong mobility is the notion of mobility that best fits in with
the classical concept of mobile agent: the execution state of a migrating agent is suspended, and
its stack and program counter are sent to the destination site, together with the relevant data;
at the destination site, the stack of the agent is reconstructed and the program counter is set
appropriately, i.e., to the first instruction after the migration action. Instead, weak mobility does
not meet the intuitive idea of mobile agent, because automatic resumption of execution thread is
one of the main features of mobile agents (it exalts their autonomy). X-KLAIM provides strong
mobility by means of the action go@l (this is obtained through a preprocessing transformation
described in [Bettini & De Nicola, 2001]) that makes an agent migrate to l and resume its execution
at l from the instruction following the migration action. Thus in the following piece of code an
agent retrieves a tuple from the local tuple space, then it migrates to the locality l and inserts the
retrieved tuple into the tuple space at locality l:

in(!i, !j)@self;
go@l;
out(i, j)@self

Also I/O operations in X-KLAIM are implemented as tuple space operations. For instance
the logical locality screen can be attached (mapped) to the output device. Hence, operation
out("foo\n")@screen corresponds to printing the string "foo\n" on the screen. Similarly, the
locality keyboard can be attached to the input device, so that a process can read what the user
typed with a in(!s)@keyboard. Further I/O devices, such as files, printers, etc., can also be handled
through the locality abstraction. An example of this usage is shown in Section 6.

However, in order to make programming in X-KLAIM slightly easier, we also supply the in-
struction print that, given a string, prints it to the standard output, followed by a carriage return.
String concatenation can be used to compose complex strings. Symbols and constants that do not
have type str are automatically converted by the compiler:

print "the value of i is " + i + ". Is it < 10? " + (i < 10)

Type casts are supplied by X-KLAIM but only in a safe way. Indeed they are only a means for
solving possible ambiguities. For instance the following instruction

out( inp(10)@self )@l
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NodeDefs ::= ε | nodes nodedefs endnodes
ProcDefs ::= ε | RecProcDefs
nodedefs ::= id :: { environment } nodeoptions nodeprocdefs

| nodedefs ; nodedefs
environment ::= ε | id ∼ id | environment , environment
nodeprocdefs ::= procbody | nodeprocdefs || nodeprocdefs
nodeoptions ::= class id | port num

Table 2: X-KLAIM node syntax.

inserts the process inp(10)@self in the tuple space corresponding to l: since X-KLAIM is a higher-
order language, the action inp(10)@self is interpreted as a process made only by such action. If
on the contrary the programmer wants to actually insert the boolean result of inp(10)@self, he
can do that by performing an explicit cast to type bool:

out( (bool) inp(10)@self )@l

This way the program assumes the following semantics:

var b : bool;
b := inp(10)@self;
out( b )@l

Notice that every cast is checked by the compiler to verify that its validity; for instance the in-
struction

out( (bool) in(10)@self )@l

would be rejected by the compiler, because in does not return a boolean value.
Apart from the implicit cast to string used for expressions printed with print, the compiler

also performs other implicit cast when passing arguments to a process; thus, if P is a process that
receives a boolean and a process, the process call

P( inp(10)@self, inp(10)@self )

is automatically converted to

P( (bool) inp(10)@self, inp(10)@self )

3 Nodes
A process can execute only on a KLAVA node since in KLAIM nodes are the execution engines.
The syntax for defining a node in X-KLAIM is in Table 2. A node is defined by specifying its name
(id), its allocation environment, some options (described later) and a set of processes running on
it. An allocation environment contains the mapping from logical localities to physical localities of
the form

logical locality variable ∼ physical locality constant

thus it also implicitly declares the logical locality variables for all the processes defined in the
node. Processes defined in a node have the same syntax of Table 1 but they do not have a name,
since these processes are visible and accessible only from within the node where they were de-
fined and not in the whole program. Basically the processes defined in a node correspond to the
main entry point in languages such as Java and C.

With the option class it is possible to specify the actual Java class that has to be used for this
node, and the option port can be used to specify the Internet port where the node is listening. No-
tice that, together with the IP address of the computer where the node will run, the port number
defines the physical locality of the node.
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3.1 Hello World in X-KLAIM

Usually the first program ever written in a language is the famous “Hello World”. We present its
version in X-KLAIM:

# HelloWorld.xklaim
nodes
hello world :: {}
begin
print "Hello World!"

end
endnodes

After compiling the file HelloWorld.xklaim with the X-KLAIM compiler,

xklaim HelloWorld.xklaim

and after compiling the resulting generated file HelloWorld.java with the Java compiler,

javac HelloWorld.java

the program can be started with the command

java HelloWorld

This will start the node hello_world listening on the standard port (9999) and the process printing
"Hello World" is started on this node.

Notice: You must have the Java package KLAVA installed in order to compile the Java code
generated by the compiler and then to run the Java programs (see [Bettini, 2003b]).

An alternative way of writing the same program is to define a process for printing the string,
and then run that process from within the node:

# HelloWorld2.xklaim
rec HelloProc[]
begin
print "Hello World!"

end

nodes
hello world2 :: {}
begin
eval(HelloProc())@self

end
endnodes

By compiling this program you will notice that the compiler generates a Java program with the
same name of the original source (e.g., containing the class HelloWorld2 with the main method),
and a separate Java source for each process (e.g., HelloProc.java). Of course you have to compile
all the Java sources generated by the compiler in order to run the program.

This way the code of the process HelloProc can be reused by other nodes in the same program.
Indeed, it can also be used by other programs: they can import its implementation as follows

rec HelloProc[] extern

nodes
hello world3::{}
begin
eval(HelloProc())@self

end
endnodes

10



Of course, the HelloProc.javamust have already been generated by the xklaim compiler. Notice,
however, that in this case the xklaim compiler will not actually check that a process HelloProc is
actually defined in some other source. If this is not the case, when you compile the corresponding
generated Java sources, you may get an error by the Java compiler if such a process cannot be
found anywhere. Thus, the extern keyword is exactly the same as in the language C.

A distributed version of the “Hello World” program can be easily built in X-KLAIM. We can
write the sender and the receiver into two separate files:

# HelloSender.xklaim, compile it with option −T 1
rec HelloSenderProc[ dest : loc ]
begin
out("Hello World!")@dest

end

nodes
hello sender::{receiver ˜ localhost:11000}
port 10000
begin
eval(HelloSenderProc(receiver))@self

end
endnodes

The sender node maps the logical locality receiver to the physical locality localhost:11000, and
passes the logical locality to the sender process that simply puts a tuple containing the string
"Hello World" in the tuple space of the remote node1. Notice that this node also specifies its
physical locality, by declaring its port. Finally, in order to keep the example simple, we rely on
the flat network model of KLAIM, where all nodes belong to the same net, and they are all at the
same level. For this reason, we have to pass the option -T 1 to the xklaim compiler when we
compile this source:

xklaim HelloSender.xklaim -T 1

The receiver node, that is executing on localhost listening on port 11000, simply waits for a
tuple made of a string a print the received message (again use the option -T 1):

# HelloReceiver.xklaim, compile it with option −T 1
nodes
hello receiver::{}
port 11000
declare
var msg : str
begin
in(!msg)@self;
print "received: " + msg
end
endnodes

Now, after compiling all the programs (and also the generated Java sources), you cannot sim-
ply run the two programs, since the two nodes expect to connect to a net server. Thus, you must
first run the KLAVA net server (the port number is optional, by default it is 9999):

java Klava.Net 9999

and then run the receiver node, by specifying the address and the port number of the net server:

java HelloReceiver localhost 9999

1In this simple example, we assume that all nodes run on the same machine — for this reason we use the localhost

address. Of course, you can experiment by running the two nodes on different machines and in that case you have to
substitute localhost with the correct IP of the receiver node
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and when the receiver node is connected to the net server, you can start the sender:

java HelloSender localhost 9999

Since the two nodes are connected to the same net server, they will be able to communicate.
Another possibility is to send the HelloSenderProc process directly to the receiver site so that

it can out the tuple locally:

# HelloSender2.xklaim, compile it with option −T 1
rec HelloSenderProc[ dest : loc ] extern

nodes
hello sender2::{receiver ˜ localhost:11000}
port 10000
begin
eval(HelloSenderProc(self))@receiver

end
endnodes

Notice that the process that outs the tuple is just the same (since it is parameterized over the
destination locality), and the sender passes self as the destination locality to the process and
spawns the process for execution at the receiver site. Further mobility examples are shown in the
next section.

3.2 Program output
During execution of X-KLAIM programs, many things are written to the standard output (con-
sole). These can be useful to see whether the programs behave correctly and also to see whether
actions complete successfully. Here we describe only the most relevant information that are writ-
ten to the standard output.

First of all, when you start a node that connects to a net server, you will see something similar
to the following strings, assuming the computer we run the programs has IP 192.168.1.100 (in
particular, this is the output of HelloReceiver program):

<192.168.1.100:11000>Connecting to 192.168.1.100:9999 ...

<192.168.1.100:11000>Socket obtained...

<192.168.1.100:11000>Connected.

<192.168.1.100:11000>Login as 192.168.1.100:11000 ...

<192.168.1.100:11000>Physical Locality: 192.168.1.100:11000

<192.168.1.100:11000>Login successful!

(Klava.LoginNodeCoordinator) Login succedeed to 192.168.1.100:9999

This shows that the node of HelloReceiver successfully enters the net server
(192.168.1.100:9999) with physical locality 192.168.1.100:11000. The connection out-
put of HelloSender will be similar (of course with a different physical locality). In particular,
when a string is prefixed by a string in parenthesis (like the last line above), it means that this is
the output of a specific process (in this case, the process of the KLAVA package that takes care of
actually performing the login in a net).

The following lines are written by the process in the node of HelloReceiver that performs the
in operation:

(__hello_receiver_1) IN( ( !KString ) )@self

(__hello_receiver_1) > IN( ( !KString ) )@192.168.1.100:11000

notice that the second string (prefixed by a >) shows that the logical locality self is first translated
into the corresponding physical locality (in this case the physical locality of the node itself). Then,
the process is blocked waiting to find a matching tuple.

On the sender site we will see these strings:

(HelloSenderProc) OUT( ( Hello World! ) )@receiver

(HelloSenderProc) >OUT( ( Hello World! ) )@192.168.1.100:11000

12



Again, the logical locality is firstly translated into the corresponding physical locality and then
the tuple is sent to the remote site.

At this point, on the receiver site, we will see these strings:

(Node - hello_receiver) OUT( ( Hello World! ) )@192.168.1.100:11000 From 192.168.1.100:10000

(__hello_receiver_1) -> IN( ( Hello World! ) )@192.168.1.100:11000

(__hello_receiver_1) received: Hello World!

The first string, output by the node itself, shows that a tuple has been received by a remote site.
At this point, the process that was waiting for a matching tuple finds one (the -> says that the
blocking operation has succeeded), and the string received is printed.

Considering the HelloSender2 program, that directly spawns the HelloSenderProc to the
receiver site, the output of the HelloReceiver node will be as follows:

(__hello_receiver_1) IN( ( !KString ) )@self

(__hello_receiver_1) > IN( ( !KString ) )@192.168.1.100:11000

(Node - hello_receiver) EVAL( ( KlavaProcessPacket : HelloSenderProc ) )@192.168.1.100:11000

From 192.168.1.100:10000

Starting a Remote Process ...

(HelloSenderProc) OUT( ( Hello World! ) )@self

(HelloSenderProc) >OUT( ( Hello World! ) )@192.168.1.100:11000

(__hello_receiver_1) -> IN( ( Hello World! ) )@192.168.1.100:11000

(__hello_receiver_1) received: Hello World!

Finally, let us observe that the sequence of these strings may interleave, since they are output
by different concurrent threads.

4 Mobility Examples
In this section we show a few programming examples dealing with mobility, implemented in
X-KLAIM. The first one is a news gatherer, that relies on mobile agents for retrieving information
on remote sites. We assume that some data are distributed over the nodes of an X-KLAIM net and
that each node either contains the information we are searching for, or, possibly, the locality of the
next node to visit in the net.

The agent NewsGatherer first tries to read a tuple containing the information we are looking
for, if such a tuple is found, the agent returns the result back home; if no matching tuple is found
within 10 seconds, the agent tests whether a link to the next node to visit is present at the current
node; if such a link is found the agent migrates there and continues the search, otherwise it reports
the failure back home.

The first implementation of such an agent is shown in Listing 4.1 and employs eval for spawn-
ing an instance of the agent to a remote site. Since eval implements weak mobility, it is necessary
to explicitly spawn a new copy to the new site, passing all the parameters representing the exe-
cution state of the agent: the boolean finish says whether the agent has visited all the possible
sites, and the search is considered successful if itemVal is not empty.

Notice that the source of the agent is a little bit complex, since it might not be clear, at first
glance, what the agent is supposed to do. One can use strong mobility in order to make the source
clearer. The implementation of the agent exploiting strong mobility (by means of the migration
operation go) is reported in Listing 4.2.

The third example is still an autonomous information retrieval agent in the context of a virtual
market place: suppose that someone wants to buy a specific product at a market made of geograph-
ically distributed shops. To decide at which shop to buy, she/he activates a migrating agent which
is programmed to find and return the name of the closest shop (i.e. the shop within the chosen
area, determined by a maximal distance parameter) with the lowest price. The implementation of
the agent MarketPlaceAgent is shown in Listing 4.3.

The MarketPlaceAgent takes as parameters the product name, the maximal distance and the
locality where the result of the search must be returned. The agent is sent (by means of an eval
not shown here) for execution at the node containing the marketplace directory, where it asks for

13



rec NewsGatherer[ item : str, itemVal : str, finish : bool, retLoc : loc ]
declare
var itemVal : str ;
var nextLoc : loc

begin
if not finish then
if read( item, !itemVal )@self within 10000 then

eval( NewsGatherer( item, itemVal, true, retLoc ) )@retLoc
else

if readp( item, !nextLoc )@self then
eval( NewsGatherer( item, "", false, retLoc ) )@nextLoc

else
eval( NewsGatherer( item, "", true, retLoc ) )@retLoc

endif
endif

else
if itemVal != "" then

print "found " + itemVal
else

print "search failed"

endif
endif

end

Listing 4.1: X-KLAIM implementation of a news gatherer using eval.

rec NewsGatherer[ item : str, retLoc : loc ]
declare
var itemVal : str ;
var nextLoc : loc ;
var again : bool

begin
again := true;
while again do
if read( item, !itemVal )@self within 10000 then

go@retLoc;
print "found " + itemVal;
again := false;

else
if readp( item, !nextLoc )@self then
go@nextLoc

else
go@retLoc;
print "search failed";
again := false

endif
endif

enddo
end

Listing 4.2: X-KLAIM implementation of a news gatherer using strong mobility.
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rec MarketPlaceAgent[ ProductMake : str, retLoc : loc, distance : int ]
declare
var shopList : TS ;
var nextShop, CurrentShop, thisShop : loc ;
var CurrentPrice, newCost : int ;
locname screen

begin
# ask for a list of shops which are within a certain distance
out( "cshop", distance )@self;
in( "cshop", !shopList )@self;
out( "retrieved list: ", shopList )@screen;
CurrentPrice := 0 ;
CurrentShop := self ;
# while there are shops in the list to be visited
forall inp( ! nextShop )@shopList do
thisShop := nextShop ;
go@nextShop ; # migrate to the next shop ;
out( "AgentClient: searching for ", ProductMake )@screen ;
if read( ProductMake, ! newCost )@self within 10000 then

if ( CurrentPrice = 0 OR newCost < CurrentPrice ) then
# update the best price
CurrentPrice := newCost;
CurrentShop := thisShop

endif
endif

enddo ;
# OK we’re done, let’s send the results
out( ProductMake, CurrentShop, CurrentPrice )@retLoc

end

Listing 4.3: X-KLAIM implementation of an agent visiting shops of a virtual market place search-
ing for an item with the lowest price.

the list of the shops in the selected shopping area. Then, MarketPlaceAgent migrates to the first
shop in the list. At each shop, MarketPlaceAgent checks the price of the wanted product, possibly
updating the information about the lowest price and the shop that offers it, and migrates to the
next shop in the list. If there are no more shops to visit, MarketPlaceAgent sends the result of
the search back to the locality received as parameter. The list of nodes to visit is stored in a list
(implemented through a ts) and forall is used for iterating over this list.

Screenshot 4.1 shows a client that performs some searches through the MarketPlaceAgent in
two shops. In this example there are two shops affiliated to the market place: Shop1 at physical
locality 127.0.0.1:11000 with a distance of 3, and Shop2 at physical locality 127.0.0.1:11005

with a distance of 5; this information is shown in the window of the market place directory (up
left). The client sends the agent searching for a camera within a distance of 10, so the market
place directory provides the agent with a list made of the localities of the two shops, and after
visiting both, the agent reports home that the first shops sells the searched item at the lower cost.
The second query has basically the same parameters but the agent has to search for a radio and
this time the second shop sells it at the lower price. Then it still searches for a radio but within a
closer distance (e.g., 4) and this time the second shop is not even visited (since its distance is 5, so
the market place directory does not put it into the list communicated to the agent). Finally a cd

is searched for (within a wider distance) and when visiting the second shop a timeout is raised,
since that shop does not sell that item.

We conclude this section by presenting an example that uses the remote evaluation paradigm,
thus, the code does not to autonomously migrate: it is moved by another process. This exam-
ple implements a load balancing system that dynamically redistributes mobile code among several
processors: we suppose that remote clients send processes for execution to a server node that dis-

15



Screenshot 4.1 The market place directory (up left), the market client (down left) and two shops
of the virtual market place.

tributes the received processes among a group of processors by using, each time, the (estimated)
idlest one. Each processor sends a number of “credits” to the server (this number corresponds
to the processor availability to perform computations on behalf of the server); the server stores
the number of credits in a database and, when needed, it chooses the processor with the highest
number of credits and decreases this number.

When a processor receives a process, it immediately starts executing the process (in a parallel
thread) and sends a credit back to the server. Indeed, the system is based on the heuristic that if a
processor is busy, it cannot send a credit back, or at least it does not send a credit immediately.

This example is implemented by the code fragment in Listing 4.4 that shows the server that
dispatches the received process to the idlest processor (left) and the processor that receives a
process for execution from the server and sends a credit back to it. The code presented here is
simplified in order to concentrate on the code mobility related parts (e.g., it does not handle cases
such as all credits are exhausted for all processors). Notice that processes are exchanged by means
of out and in. Since in this new version of KLAIM processes are not automatically “closed”2 when
sent with an out, then when a process is executed in a processor it will actually use the local
resources.

The overall architecture of this load balancing system is based on a push model, in that the
server delivers the processes to be executed to a chosen processor node. An alternative imple-
mentation could be based on a pull model: a processor node, when idle, asks the server for a pro-
cess to be executed. This architecture can be employed to develop systems similar to SETI@home
[Korpela et al., 2001] that uses Internet-connected computers in the Search for Extraterrestrial Intel-
ligence (SETI): users that want to help the project can install this software that downloads data to
be analyzed from the server when the computer is idle (for instance when the screen saver starts).

2In the early version of X-KLAIM, when a process was sent to a remote site with an out, its closure was actually sent,
i.e., the process together with the allocation environment of the node where out is performed. This implied that all the
logical localities of the sent process were actually translated using the allocation environment of the starting node, instead
of the destination node. This corresponded to a static scoping discipline for out.
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rec DeliverProcess[ ProcessorDB : ts ]
declare

var P : process ;
var HighestCredit, Credits : int ;
var Processor, HighestProcessor : loc

begin
while ( true ) do
in( !P )@self ; # wait for a process
HighestCredit := 0 ;
forall readp( !Processor, !Credits )@ProcessorDB do

if ( Credits > HighestCredit ) then
HighestCredit := Credits ;
HighestProcessor := Processor

endif
enddo ;
out( P )@HighestProcessor ;
# update its credits
in( HighestProcessor, HighestCredit )@ProcessorDB ;
out( HighestProcessor, HighestCredit − 1 )@ProcessorDB

enddo
end

rec ReceiveProcess[ server : loc ]
declare
var P : process ;
locname screen

begin
while ( true ) do

in( !P )@self ;
eval( P )@self ;
out( "SERVER", "CREDIT", self )@server

enddo
end

Listing 4.4: Load balancing: (left) the server receives a process and dispatches it to the idlest
processor; (right) the processor node receives a process and executes it locally and sends a credit
back to the server.

NodeCoordinator ::= rec NodeCoordDef
NodeCoordDef ::= nodecoord id formalparams declpart nodecoordbody

| nodecoord id formalparams extern
nodecoordbody ::= begin nodecoordactions end
nodecoordaction ::= standard process action | login( id ) | logout( id )

| accept( id ) | disconnected( id ) | disconnected( id , id )
| subscribe( id , id ) | unsubscribe( id , id ) | register( id , id ) | unregister( id )
| newloc( id ) | newloc( id , nodecoordactions )
| newloc( id , nodecoordactions , num , classname )
| bind( id , id ) | unbind( id )
| dirconnect( id ) | acceptconn( id )

Table 3: X-KLAIM node coordinator syntax. This syntax relies on standard process syntax shown
in Table 1

5 Node Connectivity in X-KLAIM

As hinted in the introduction, this new version of the language X-KLAIM differs from previous
presentations in that it relies on the hierarchical model of KLAIM(we refer the interested reader to
[Bettini et al., 2002a; Bettini, 2003a] for a formal treatment of such model). Thus, it also provides
all the primitives for explicitly dealing with node connectivity. Consistently with the hierarchical
model of KLAIM such actions can be performed only by node coordinators.

The syntax of node coordinators is shown in Table 3, and is basically the same of standard
X-KLAIM processes (Table 1) apart from the new privileged actions. We briefly comment these
new actions:

• login(loc), where loc is an expression of type loc, logs the node where the node coordinator
is executing at the node at locality loc; logout(loc) logs the node out from the net managed
by the node at locality loc. login can be used as a boolean expression in that it returns true
if the login succeeds and false otherwise.

• accept(l) is the complementary action of login and indeed, the two actions have to synchro-
nize in order to succeed; thus a node coordinator on the server node (the one at which other
nodes want to log) has to execute accept. This action initializes the variable l to the physical
locality of the node that is logging. disconnected(l) notifies that a node has disconnected
from the current node; the physical locality of such node is stored in the variable l. dis-
connected also catches connection failures. Notice that both accept and disconnected are
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rec nodecoord SimpleLogin[ server : loc ]
begin

print "try to login to " + server + "...";
if login( server ) then

print "login successful";
out("logged", true)@self

else
print "login failed!"

endif
end

rec nodecoord SimpleLogout[ server : loc ]
begin

in("logged", true)@self;
print "logging off from " + server + "...";
logout(server);
print "logged off."

end

rec nodecoord SimpleAccept[]
declare

var client : phyloc
begin

print "waiting for clients...";
accept(client);
print "client " + client + " logged in"

end

rec nodecoord SimpleDisconnected[]
declare

var client : phyloc
begin

print "waiting for disconnections...";
disconnected(client);
print "client " + client + " disconnected."

end

Listing 5.1: An example showing login and logout (left) and the corresponding accept and dis-
connected.

blocking in that they block the running process until the event takes place. Instead, logout
does not have to synchronize with disconnected.

An example of these four operations is shown in Listing 5.1, where the node coordinators exe-
cuting on the client are presented on the left, and the complementary ones executing on the server
are presented on the right. Notice that the process that executes the login communicates with the
one that has to execute the logout by using a tuple. accept and disconnected are initializers for
the corresponding variables.

• subscribe(loc, logloc) is similar to login, but it also permits specifying the logical locality
(logloc is an expression of type logloc) with which a node wants to become part of the net
coordinated by the node at locality loc; this request can fail also because another node has
already subscribed with the same logical locality at the same server. unsubscribe(loc, logloc)
performs the opposite operation.

• register(pl, ll), where pl is a physical locality variable and ll is a logical locality variable,
is the complementary action of subscribe that has to be performed on the server; if the
subscription succeeds pl and ll will respectively contain the physical and the logical locality
of the subscribed node. The association pl ∼ ll is automatically added to the allocation
environment of the server. unregister(pl, ll) records the unsubscriptions. Notice that an
alternative version of disconnected, namely disconnected(pl, ll) is supplied, in order to
detect lost connections with nodes, that also specifies the logical locality with which a node
was subscribed. As the other disconnected explained above, this action is more powerful
in that it is able to catch also connections brutally closed without an unsubscribe. Let us
observe that disconnected catches also the events of unregister so if program uses both, it
is up to the programmer to coordinate the two notification actions (an example of such a
scenario is shown in Section 6).

An example using these actions is presented in Listing 5.2; the processes are basically similar
to those presented in Listing 5.1, but they also deal with logical localities.

bind(logloc, phyloc) allows to dynamically modify the allocation environment of the current
node: it adds the mapping logloc ∼ phyloc. On the contrary, unbind(logloc) removes the mapping
associated to the logical locality logloc. These two operations privileged and only node coordina-
tors can execute them.

In this version of X-KLAIM newloc has become a privileged action and is supplied in three
forms in order to make programming easier: apart from the standard form that only takes a
locality variable, where the physical locality of the new created node is stored, also the form
newloc(l, nodecoordinator) is provided. Since newloc does not automatically logs the new created
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rec nodecoord
SimpleSubscribe[ server : phyloc, name : logloc ]
begin

print "try to subscribe at " + server +
" as " + name + "...";

if subscribe( server, name ) then
print "subscribe successfull";
out("subscribed", true)@self

else
print "subscribe failed!"

endif
end

rec nodecoord
SimpleUnsubscribe[ server : phyloc, name : logloc ]
begin

in("subscribed", true)@self;
print "now unsubscribing from " + server +
" as " + name + "...";

unsubscribe(server, name);
print "unsubscribed."

end

rec nodecoord SimpleRegister[]
declare

var clientloc : logloc;
var client : phyloc

begin
print "waiting for clients to subscribe...";
if register(client, clientloc) then

print "client " + clientloc + "~" +
client + " subscribed"

else
print "client failed to subscribe"

endif
end

rec nodecoord SimpleUnregister[]
declare

var client : logloc
begin

print "waiting for unsubscription...";
unregister(client);
print "client " + client + " unsubscribed."

end

Listing 5.2: An example showing subscribe and unsubscribe (left) and the corresponding regis-
ter and unregister.

node in the net of the creating node, this second form allows to install a node coordinator in the
new node that can perform this action (or other privileged actions).

Notice that this is the only way of installing a node coordinator on another node: due to
security reasons, node coordinators cannot migrate, and cannot be part of a tuple. In order to
provide better programmability, this rule is slightly relaxed: a node coordinator can perform the
eval of a node coordinator, provided that the destination is self.

Finally the third form of newloc takes two additional arguments: the port number where
the new node is going to be listening (and this also determines its physical locality, since the IP
address will be the same of the creator node), and the (Java) class of the new node. Since I/O
devices can be abstracted into nodes, this form of newloc enables to construct, for instance, the
graphical interface of a node, made up of several I/O sub-nodes. For an example, see Section 6,
where screen, keyboard and usersList are logical localities actually mapped into KLAVA nodes that
supply and interface for a text area, and input text box and a list.

In this scenario communications among nodes belonging to the same subnet take place,
through the gateway node. In case of firewalls or network restrictions the access to a remote node
may be permitted only through a server. For instance, an applet can only open a network connec-
tion towards the computer it has been downloaded from. If on this computer there is a NetNode

running that is willing to act as a gateway, the applet is still able to indirectly communicate with
all the nodes and, possibly, with applets that are part of that net managed by that gateway; An
example of a KLAVA applet is available at http://music.dsi.unifi.it/klava_applet. In this
sense, a NetNode gateway allows nodes to communicate even if they belong to different restricted
domains. However, when there are no network restrictions, direct connections can still be estab-
lished in order to use a direct (probably faster) communication between nodes of the same, or
different, subnet.

In this version of X-KLAIM also direct connections can be dealt with explicitly, so we provide the
complementary privileged action dirconnect(loc) and acceptconn(l) that allow to create a unidi-
rectional direct communication channel. Thus if a node n1 establishes a direct connection with the
node n2 every time n1 sends a message to n2 it will do this directly, i.e., without passing through
a possible common server. This situation is not symmetric since the direct connection is unidirec-
tional. Should one want a bidirectional peer to peer communication, this has to be programmed
explicitly so that upon accepting a direct connection from a node, also the other way direction is
established.

An example is presented in Listing 5.3; here also the node definitions are shown in order to
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rec nodecoord SimpleDirConn[ peer : loc ]
declare

var test : str
begin

print "establishing direct connection to " +
peer;

if dirconnect(peer) then
print "established";
out("TEST")@peer;
in(!test)@peer;
print "sent and receive " + test

else
print "direct connection to " +
peer + " failed."

endif
end

rec nodecoord SimpleAcceptConn[]
declare

var peer : phyloc
begin

print "waiting for direct connections...";
acceptconn(peer);
print "accepted direct connection from " + peer

end

nodes
mandirconnpeer2 :: {}
port 11000
class "NetNode"
start
declare

var peer : phyloc
begin

eval(SimpleAcceptConn())@self;
peer := "127.0.0.1:9999";
eval(SimpleDirConn(peer))@self

end
endnodes

rec nodecoord SimpleAcceptConnAndConnect[]
declare
var peer : phyloc

begin
print "waiting for direct connections...";
acceptconn(peer);
print "accepted direct connection from "

+ peer;
print "now connecting to " + peer;
if dirconnect(peer) then

print "established"
else

print "direct connection to " +
peer + " failed."

endif
end

nodes
mandirconnpeer1 :: {}

class "NetNode"
start
begin
eval(SimpleAcceptConnAndConnect())@self

end
endnodes

Listing 5.3: An example showing dirconnect and acceptconn for establishing a peer to peer direct
communication.

clarify the scenario: mandirconnpeer2 wants to engage a peer to peer communication with the
node at locality 127.0.0.1:9999, thus, it executes a node coordinator for establishing the direct
connection, and also executes a node coordinator for accepting the corresponding direct connec-
tion request (from the other peer). The other peer mandirconnpeer1 executes the complementary
protocol by running a node coordinator that first accepts a direct connection and then establishes
a direct connection to the same node.

The node that first tries to establish the direct connection (mandirconnpeer2 in this example)
should execute the dirconnect and acceptconn in two parallel processes: if it executed the two
actions in sequence, the acceptconn would not be guaranteed to start before the other peer started
its request. This would probably lead to a deadlock. The other peer (mandirconnpeer1 in this
example), instead, can safely execute the complementary acceptconn and dirconnect in sequence.

6 A Chat System with Connectivity Actions
In this section we present the implementation in X-KLAIM of a chat system; this is based on the
one presented in [Bettini et al., 2004a] that, however, did not rely on the new features. The chat
system we present in this section is simplified, but it implements the basic features that are present
in several chat systems. The system consists of a ChatServer and many ChatClients.

The system is dynamic because new clients can enter the chat and existing clients may dis-
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rec nodecoord HandleLogin[ usersDB : ts ]
declare
var nickname : logloc ;
var client : phyloc ;
locname users, screen, server

begin
while ( true ) do

if register( client, nickname ) then
out( nickname, client )@usersDB ;
out( true )@client ;
SendUserList( client, usersDB ) ;
out( (str)nickname )@users ;
out( "Entered Chat : " )@screen ;
out( nickname, client )@screen ;
BroadCast( "USER", "ENTER",

nickname, server, usersDB )
endif

enddo
end

rec SendUserList[ newEnter : phyloc, usersDB : ts ]
declare
var nickname : logloc ;
var userLoc : phyloc ;
var userList : ts

begin
newloc( userList ) ;
forall readp( !nickname, !userLoc )@usersDB do

if ( userLoc != newEnter ) then
out( nickname )@userList

endif
enddo ;
out( userList )@newEnter

end

rec nodecoord HandleDisconnected[ usersDB : ts ]
declare

var nickname : logloc ;
var client : phyloc ;
locname screen

begin
while ( true ) do
disconnected(client, nickname);
out("disconnected: ", nickname, client)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec nodecoord HandleUnregister[ usersDB : ts ]
declare

var nickname : logloc ;
locname screen

begin
while ( true ) do
unregister(nickname);
out("unsubscription: ", nickname)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec RemoveClient[ nickname : logloc, usersDB : ts ]
declare

var client : phyloc ;
locname screen, users, server

begin
if inp( nickname, !client )@usersDB and

inp( (str)nickname )@users then
out( "Left Chat : " )@screen ;
out( nickname, client )@screen ;
BroadCast( "USER", "LEAVE",

nickname, server, usersDB )
endif

end

Listing 6.1: Node coordinators of the chat server dealing with clients’ subscriptions.

connect. The server represents the gateway through which the clients can communicate, and the
clients logs in the chat server by specifying their “nickname”, represented here by a logical local-
ity. A client that wants to enter the chat must subscribe at the chat server. The server must keep
track of all the registered clients and, when a client sends a message, the server has to deliver the
message to every connected client. If the message is a private one, it will be delivered only to the
clients in the list specified along with the message.

6.1 The Chat Server
When a new client issues a subscription request, the server accepts it only if there is no other client
with the same nickname, and in case the access is granted, every client is notified about the new
client; moreover the new client is also provided with the list of the clients currently in the chat
(Listing 6.1). The server keeps a database of all connected clients in a variable usersDB of type ts
where there is a tuple of the shape (nickname, locality) for each client, where nickname is a
logical locality and locality is a physical one. Notice that all the processes running on the chat
server share this database.

The server uses two (node coordinator) processes for intercepting clients’ disconnections:
HandleUnregister and HandleDisconnected. The second one would be useless if the network
communications are reliable (i.e., no communication suddenly crashes without further notice);
however, this assumption may be too strong in a realistic scenario. Thus HandleDisconnected

intercepts also this kind of disconnections. As we said above the disconnected action returns
even after an ordinary unsubscription, so the process RemoveClient has to further check whether
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rec HandleMessage[ usersDB : ts ]
declare

var message : str ;
var sender : logloc ;
var from : phyloc

begin
while ( true ) do
in( "MESSAGE", !message, !from )@self ;
if readp( !sender, from )@usersDB then

BroadCast( "MESSAGE", "ALL",
message, sender, usersDB )

endif # ignore errors
enddo

end

rec HandlePersonal[ usersDB : ts ]
declare

var message : str ;
var sender : logloc ;
var from : phyloc ;
var to : ts

begin
while ( true ) do
in( "PERSONAL", !message, !to, !from )@self ;
if readp( !sender, from )@usersDB then

BroadCastTo( "MESSAGE", "PERSONAL",
message, to, sender, usersDB )

endif
enddo

end

rec BroadCast[ communication type : str, message type : str,
message : str, from : logloc, usersDB : ts ]

declare
var nickname : logloc ;
var user : phyloc

begin
forall readp( !nickname, !user )@usersDB do

out( communication type, message type,
message, from )@user

enddo
end

rec BroadCastTo[ communication type : str, message type : str,
message : str, to : ts, from : logloc, usersDB : ts ]

declare
var nickname : str ;
var user : phyloc

begin
forall inp( !nickname )@to do

# recipients are specified as strings in the ”to” list
# so we have to convert them first
if readp( (logloc) nickname, !user )@usersDB then
out( communication type, message type,

message, from )@user
endif

enddo
end

Listing 6.2: Processes on the server dealing with message dispatching.

a client has already been removed from the database.
The broadcasting of messages to clients is managed by two processes running on the

ChatServer node: BroadCast and BroadCastTo (Listing 6.2): the former sends a message to all
connected clients while the latter sends a message only to the clients specified in the list to. This
second version is useful when delivering personal messages.

All messages have the following tuple shape:

(communication_type, message_type, message, from)

where communication_type and message_type specify the type of message (e.g., the values
"USER" together with "ENTER" indicate that a user entered the chat, while "MESSAGE" and "ALL"

indicate a chat message that is destined to every client). message is the content of the message
(e.g., the nickname of the user that entered the chat or the body of a chat message) and from is the
nickname (logical locality) of the client that originated the message.

Messages are received by the chat server by means of two processes HandleMessage and
HandlePersonal (respectively for standard chat messages and for personal messages) also shown
in Listing 6.2. When a client wants to send a personal message it has to specify also a list (a ts tu-
ple field) containing the nicknames of the clients it is destined to). These processes are responsible
for delivering a message to all the recipient clients.

6.2 The Chat Client
A chat client executes two processes for handling messages dispatched by the server (Listing 6.3):
HandleMessages takes care of processing chat messages and HandleServerMessages handles
server messages informing of new clients joining the chat or existing clients leaving (the list of
connected clients is updated accordingly). This information is printed on the screen of the client
(attached to the locality screen).

The user can insert messages for the server (i.e., commands for entering and exiting from
the chat) and standard chat messages in two text fields that are attached, respectively, to the

22



rec HandleMessages[]
declare

locname screen ;
const standard message := "MESSAGE";
var message, message type : str ;
var from : logloc

begin
while ( true ) do
in( standard message, !message type,

!message, !from )@self ;
if message type = "PERSONAL" then

out( "PERSONAL " )@screen
endif;
out( "(" )@screen ;
out( (str)from )@screen ;
out( ") " )@screen ;
out( message )@screen ; out( "\n" )@screen

enddo
end

rec HandleServerMessages[]
declare

locname screen, usersList ;
const user message := "USER" ;
var command, nickname : str;
var from : logloc

begin
while ( true ) do
in( user message, !command,

!nickname, !from )@self ;
if command = "ENTER" then

out( nickname )@screen ;
out( " entered chat\n" )@screen ;
if not readp(nickname)@usersList then

out( nickname )@usersList
endif

else
if command = "LEAVE" then

out( nickname )@screen ;
out( " left chat\n" )@screen ;
inp( nickname )@usersList
# ignore non existing names

endif
endif

enddo
end

rec nodecoord HandleServerKeyboard[]
declare

locname server, screen, serverKeyb, usersList;
var command, nick : str ;
var nickname : logloc ;
var response : bool ;
var chat server : phyloc ;
var userList : ts

begin
chat server := ∗server;
while ( true ) do
in( !command, !nick )@serverKeyb ;
if ( command != "ENTER" and command != "LEAVE" ) then

out( "Unknown command: " )@screen ;
out( command )@screen ;
out( "\n" )@screen

else
# nick was entered as a string
nickname := (logloc) nick;
if command = "ENTER" then

if subscribe( chat server, nickname ) then
out( "Succeeded command: " )@screen ;
in( !userList )@self ;
UpdateUserList( userList )

else
out( "Failed command: " )@screen

endif
else # it is a LEAVE

unsubscribe( chat server, nickname ) ;
out("command", "removeAll")@usersList

endif ;
out( command, nickname )@screen

endif
enddo

end

rec HandleMessageKeyboard[]
declare

const ID := "messageKeyboard" ;
var message : str ;
var selected : str ;
var selectedUsers : ts ;
locname messageKeyb, usersList, server

begin
while ( true ) do
in( !message )@messageKeyb ;
# is there someone selected?
out( "command", "getSelectedItem", ID )@usersList ;
in( "command", "getSelectedItem", ID, !selected )@usersList ;
if ( selected != "" ) then

newloc( selectedUsers ) ;
out( selected )@selectedUsers ;
# there’s some one selected
out( "PERSONAL", message, selectedUsers, ∗self )@server

else
out( "command", "getSelectedItems", ID )@usersList ;
in( "command", "getSelectedItems",

ID, !selectedUsers )@usersList ;
if readp( !selected )@selectedUsers then

# there’s some one selected
out( "PERSONAL", message, selectedUsers, ∗self )@server

else
# no one selected: broadcast
out( "MESSAGE", message, ∗self )@server

endif
endif

enddo
end

Listing 6.3: Node coordinators and processes running on a chat client.
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Screenshot 6.1 Three chat clients and the chat server.

localities serverKeyb and messageKeyb. For each of these localities there is a process, respectively
HandleServerKeyboard and HandleMessageKeyboard (also in Listing 6.3) that read the input of
the user and communicate with the server. When HandleServerKeyboard reads a tuple of the
shape ("ENTER", nickname) it tries to subscribe at the chat server with that specific nickname.
On the contrary, if the tuple contains "LEAVE" it unsubscribes.

A user can specify that a chat message is destined only to a restricted number of clients
by selecting them from the list of connected clients. Such list is indeed attached to the local-
ity usersList that, in turn, is a special tuple space that provides a sort of interface for access-
ing the items of such list (in the KLAVA implementation this tuple space is an interface for a
java.awt.List object). Thus a process can access the elements of such a list through tuples that
start with the string "command" and consist of a specific command and its arguments. For each
command the template of the tuple is different. If the result of a command has to be retrieved
the request is issued with an out and the response retrieved with an in. An identifier has to be
provided so that a process does not retrieve the result of the request of another process. For in-
stance the following two lines retrieve multiple selected items in the list (the result is stored in the
ts variable selected):

out( "command", "getSelectedItem", ID )@usersList ;
in( "command", "getSelectedItem", ID, !selected )@usersList ;

If there is some client selected in this list, the message is sent as "PERSONAL" and the list of recipi-
ents is sent along with the message; otherwise the message is considered destined to all connected
clients.

Screenshot 6.1 shows three chat clients and the chat server.

7 Mobility and Object-Oriented Code
Before describing the object-oriented features of X-KLAIM, we have to introduce the program-
ming philosophy for object-oriented code mobility and in particular we have to sketch the ba-
sic features of MOMI a calculus that allows to exchange object-oriented mobile code structured
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through mixin-based inheritance. The MOMI programming philosophy has been adopted to
add object-oriented features to KLAIM, thus obtaining O’KLAIM (Object-Oriented KLAIM first pre-
sented in [Bettini et al., 2001a] and refined in [Bettini, 2003a; Bettini et al., 2004b]). Indeed, the
object-oriented features of X-KLAIM are based on O’KLAIM.

7.1 Design Issues
First, let us consider two different scenarios, where an object-oriented application is received
from (sent to) a remote site. In this setting we can assume that the application consists of a piece
of code A that moves to a remote site, where it will be composed with a local piece of code B.
These scenarios may take place during the development of an object-oriented software system in
a distributed context with mobility.

Scenario 1 The local programmer may need to dynamically download classes in order to com-
plete his own class hierarchy, without triggering off a chain reaction of changes over the
whole system. For instance, he may want the downloaded class A to be a child class of
a local class B. This generally happens in frameworks [Gamma et al., 1995]: classes of the
framework provide the general architecture of an application (playing the role of the local
software), and classes that use the framework have to specialize them in order to provide
specific implementations. The downloaded class may want to use operations that depend
on the specific site (e.g., system calls); thus the local base class has to provide generic op-
erations and the mobile code becomes a derived class containing methods that can exploit
these generic operations.

Scenario 2 The site that downloads the class A for local execution may want to redefine some,
possibly critical, operations that remote code may execute. This way access to some sensi-
tive local resources is not granted to untrusted code (for example, some destructive “read”
operations should be redefined as non-destructive ones in order to avoid that non-trusted
code erases information). Thus the downloaded class A is seen, in this scenario, as a base
class, that is locally specialized in a derived class B.

Summarizing, in 1 the base class is the local code while in 2 the base class is the mobile code.
These scenarios are typical object-oriented compositions seen in a distributed mobile context.
A major requirement is that composing local code with remote code should not affect existing
code in a massive way. Namely, both components and client classes should not be modified nor
recompiled.

Standard mechanisms of class extension and code specialization would solve these design
problems only in a static and local context, but they do not scale well to a distributed context with
mobile code. The standard inheritance operation is essentially static in that it fixes the inheritance
hierarchy, i.e., it binds derived classes to their parent classes once for all at compile time. If such
a hierarchy has to be changed, the program must be modified and then recompiled. This is quite
unacceptable in a distributed mobile scenario, since it would be against its underlying dynamic
nature. Indeed, what we are looking for is a mechanism for providing a dynamic reconfiguration
of the inheritance relation between classes, not only a dynamic implementation of some opera-
tions.

Let us go back and look in more details at the above scenarios. We could think of imple-
menting some kind of “dynamic inheritance” for specifying at run-time the inheritance relation
between classes without modifying their code. Such a technique could solve the difficulty raised
by scenario 1. However dynamic inheritance is not useful for solving scenario 2, that would re-
quire a not so clear dynamic definition of the base class. Another solution would be releasing the
requirement of not affecting the existing code, and allowing to modify the code of the local class
(i.e., the local hierarchy). This could solve the second scenario, but not the first one that would re-
quire access to foreign source code. We are also convinced that the two scenarios should be dealt
with by the same mechanism, allowing to dynamically use the same code in different environ-
ments, either as a base class for deriving new classes, or as derived class for being “adopted” by
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a parent class. We remark that a solution based on delegation could help solving these problems.
However delegation would destroy at least the dynamic binding and the reusability of the whole
system [Bettini et al., 2003a].

Summarizing, mobile object-oriented code needs to be much more flexible than locally de-
veloped applications. To this aim we propose a novel solution which is based on a mixin ap-
proach with subtyping and we show that it enables to achieve the sought dynamic flexibility.
Indeed, mixin-based inheritance is more oriented to the concept of “completion” than to that of
extendibility/specialization. Mixins are incomplete class specifications, parameterized over su-
perclasses, thus the inheritance relation between a derived and a base class is not established
through a declaration (e.g., like extends in Java), instead it can be coordinated by the operation of
mixin application, that takes place during the execution of a program, and it is not in its declaration
part.

The novelty of our approach is the smooth integration of mobile code with mixins, a power-
ful tool for implementing reusable class hierarchies, that originated in a classical object-oriented
setting as an alternative to class-based inheritance. The above examples hint that the usual class
inheritance would not scale that harmoniously to the mobile and distributed context.

7.2 MOMI and O’KLAIM basic concepts
MOMI was introduced in [Bettini et al., 2002b] and extended in [Bettini et al., 2003b]. The underly-
ing motivating idea is that standard class-based inheritance mechanisms, which are often used to
implement distributed systems, do not scale well to distributed contexts with mobility. MOMI’s
approach consists in structuring mobile object-oriented code by using mixin-based inheritance
(a mixin is an incomplete class parameterized over a superclass, see [Bracha & Cook, 1990; Flatt
et al., 1998]); this fits with the dynamic and open nature of a mobile code scenario. For example, a
downloaded mixin, describing a mobile agent that must access some files, can be completed with
a base class in order to provide access methods specific of the local file system. Conversely, crit-
ical operations of a mobile agent, enclosed in a downloaded class, can be redefined by applying
a local mixin to it (e.g., in order to restrict access to sensible resources, as in a sand-box). There-
fore, MOMI is a combination of a core coordination calculus and an object-oriented mixin-based
calculus equipped with types. The key rôle in MOMI’s typing is played by a subtyping relation
that guarantees safe, yet flexible and scalable, code communication, and lifts type soundness of
local code to a global type safety property. In fact, we assume that the code that is sent around
has been successfully compiled and annotated with its static type. When the code is received on
a site (under the hypothesis that the local code has been successfully compiled, too), it is accepted
only if its type is subtyping-compliant with the expected one. If the code is accepted, it can be
integrated with the local code under the guarantee of no run-time errors, and without requiring
any further type checking of the whole code. MOMI’s subtyping relation involves not only object
subtyping, but also a form of class subtyping and mixin subtyping: therefore, subtyping hierar-
chies are provided along with the inheritance hierarchies. It is important to notice that we are not
violating the design rule of keeping inheritance and subtyping separated, since mixin and class
subtyping plays a pivotal role only during the communication, when classes and mixins become
genuine run-time polymorphic values.

In synthesis, MOMI consists of:

1. the definition of an object-oriented “surface calculus” with types called SOOL (Surface
Object-Oriented Language), that describes the essential features that an object-oriented lan-
guage must have to write mixin-based code;

2. the definition of a subtyping relation on the class and mixin types of the above calculus, to
be exploited dynamically at communication time;

3. a very primitive coordination language based on a synchronous send/receive mechanism,
to put in practice the communication of the mixin-based code among different site.
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exp ::= v (value)
| new exp (object creation)
| exp⇐ m (method call)
| exp1 � exp2 (mixin appl.)

v ::= {mi : τmi = fi
i∈I} (record)

| x (variable)
| class [mi : τmi = fi

i∈I ] end (class def)

|

mixin
expect[mi : τmi

i∈I ]
redef[mk : τmk with fk

k∈K]
def[m j : τm j = f j

j∈J ]

end

(mixin def)

Table 4: Syntax of SOOL.

O’KLAIM [Bettini et al., 2004b] is the integration of SOOL and its subtyping (both described in
the next section), within KLAIM, which offers a much more sophisticated, complete, and effective
coordination mechanism than the toy one of MOMI.

SOOL is defined as a standard class-based object-oriented language supporting mixin-based
class hierarchies via mixin definition and mixin application. It is important to notice that specific
incarnations of most object-oriented notions (such as, e.g., functional or imperative nature of
method bodies, object references, cloning, etc.) are irrelevant in this context, where the emphasis
is on the structure of the object-oriented mobile code. Hence, we work here with a basic syntax
of the kernel calculus SOOL (shown in Table 4), including the essential features a language must
support to be O’KLAIM’s object-oriented component.

SOOL expressions offer object instantiation, method call and mixin application; � denotes the
mixin application operator. A SOOL value, to which an expression reduces, is either an object,
which is a (recursive) record {mi : τmi = fi

i∈I}, or a class definition, or a mixin definition, where
[mi : τmi = fi

i∈I ] denotes a sequence of method definitions, [mk : τmk with fk
k∈K] denotes a se-

quence of method re-definitions, and I, J and K are sets of indexes. Method bodies, denoted here
with f (possibly with subscripts), are closed terms/programs and we ignore their actual struc-
ture. A mixin can be seen as an abstract class that is parameterized over a (super)class. Let us
describe informally the mixin use through a tutorial example:

M = mixin
expect [n : τ]
redef [m2 : τ2 with . . . next() . . .]
def [m1 = . . . n() . . .]

end

C = class
[n = . . .
m2 = . . .]

end

(new (M � C))⇐ m1()

Each mixin consists of three parts:

1. methods defined in the mixins, like m1;

2. expected methods, like n, that must be provided by the superclass;

3. redefined methods, like m2, where next can be used to access the implementation of m2 in the
superclass. The application M � C constructs a class, which is a subclass of C.

The key idea of SOOL’s typing is the introduction of a novel subtyping relation, denoted byv,
defined on class and mixin types. This subtyping relation is used to match dynamically the actual
parameter’s types against the formal parameter’s types during communication. The subtyping
relation v is informally defined as follows: for classes, it is naturally induced by the (width)
subtyping on record types, while for mixins, subtyping permits the subtype to define more ‘new’
methods; prohibits to override more methods; and enables a subtype to require less expected
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methods. Notice that in O’KLAIM and in X-KLAIM only subtyping-in-width, i.e., subtype records
can define more methods, but cannot change the signatures of already existing methods3.

In order to obtain O’KLAIM, the syntax of tuples is extended in order to include any object-
oriented value v (defined in Table 4). Actions in(t)@` (and read(t)@`) and out(t)@` can be used
to move object-oriented code (together with the other KLAIM items) from/to a locality `, respec-
tively. The object-oriented subtyping, described above, will be used during pattern matching.

We present in the following two simple examples showing mobility of mixins in O’KLAIM
with types. They code the remote evaluation and the code-on-demand situations discussed above.
Let us observe that both situations can be seen as examples of mobile agents as well.

Example 1. Let agent represent the type of a mixin defining a mobile agent that has to print some
data by using the local printer on any remote site where it is shipped for execution. Obvi-
ously, since the print operation highly depends on the execution site (even only because of
the printer drivers), it is sensible to leave such method to be defined. The mixin can be ap-
plied, on the remote site, to a local class printer which provides the specific implementation
of the print method in the following way:

in(!mob agent : agent)@self.
def PrinterAgent = mob agent � printer in
(new PrinterAgent)⇐ start()

Example 2. Let agent be a class defining a mobile agent that has to access the file system of a
remote site. If the remote site wants to execute this agent while restricting the access to its
own file system, it can locally define a mixin restricted, redefining the methods accessing the
file system according to specific restrictions. Then the arriving agent can be composed with
the local mixin in the following way.

in(!mob agent : agent)@self.
def RestrictedAgent = restricted �mob agent in
(new RestrictedAgent)⇐ start()

This example can be seen as an implementation of a “sandbox”.

The above examples highlight how an object-oriented expression (!mob agent) can be used by
the receiver site both as a mixin (Example 1) and as a base class.

8 Object-Oriented Features
The syntax of object-oriented features of X-KLAIM are shown in Table 5. So, the syntax of
X-KLAIM processes is extended with object-oriented operations, and basically the syntax of
method bodies is the same of the one of an X-KLAIM process (apart from the return statement).
Notice that, consistently with the nature of the language X-KLAIM, methods are explicitly typed
(so the compiler does not have to perform type inference, but only type checking). Furthermore,
since in this version of the implementation depth subtyping is not dealt with, a method can only
redefine the implementation and not the signature.

The keyword self is already a reserved word in X-KLAIM, so we must use this in its place
to refer to the host object. Furthermore, in method invocation, the receiver object must always
be specified, also when a method is called from a method itself, to solve possible ambiguities
with process call in X-KLAIM. Finally, in X-KLAIM, class and mixin definitions are allowed to
declare also fields. These fields are always considered private. For simplicity, in SOOL, we did not

3An extension of SOOL with subtyping-in-depth can be found in a preliminary form in [Bettini et al., 2003b]. Subtyping-
in-depth offers a much more flexible communication pattern, but it complicates the object-oriented code exchange for
problems similar to the “subtyping-in-depth versus override” matter of the object-based languages (see [Abadi & Cardelli,
1996; Bettini et al., 2003b] for examples).
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typename ::= type class id methoddecls end
| type mixin id mixinmethoddecls end

class ::= class id { declare fields }methods end
mixin ::= mixin id { declare fields }mixinmethods end

field ::= const id := expression
| locname id
| var idlist : type

type ::= xklaimtype | object id | class id |mixin id
method ::= methoddecl methodbody

methodbody ::= { localvars } begin methodactions end
methoddecl ::= id ( parameters ) { : type }

mixinmethod ::= defredefdecl methodbody
| expectedmethod

defredefdecl ::= (def | redef ) methoddecl
expectedmethod ::= expect methoddecl

mixinmethoddecl ::= defredefdecl | expectedmethod
methodaction ::= processaction | return exp

exp ::= xklaimexp | new exp | exp <> exp |methodcall | this | this.id
processaction ::= xklaimaction |methodcall

methodcall ::= exp . id ( arguments ) | next ( arguments )

Table 5: X-KLAIM syntax for MOMI features. Symbols of the shape xxxs, such as “parameters”
and “arguments”, are intended as (possibly empty) lists of xxx, separated by the appropriate
separator.

treat fields. However, in a real object-oriented language, fields are a very useful feature; in our
implementation, as fields are private, they have a minimal impact on the theory of MOMI since
they do not appear in the exported interface of classes, mixins and objects.

In the extended version of X-KLAIM class and mixin names, that are used for specifying a type
(e.g., object id, class id, mixin id) in a variable or parameter declaration, are only a shortcut for
their actual interface. Thus, when performing type checking and structural subtyping, internally,
the compiler replaces a class (resp. mixin) name with the corresponding class (resp. mixin) type.
This is consistent with one of the principal aims of MOMI, i.e., flexibility in mobile object-oriented
code exchange: a class name would be meaningless in a remote site where that name is not known,
and if that name would be known also its code would be available at the remote site, and code
exchange would be useless. Obviously there must be some types on which all nodes that want
to exchange object-oriented code have to agree upon, and by default these are the basic types. In
order to defined interfaces, one can use the syntax of typename, which is basically similar to a class
or mixin definition, apart from the fact that only method signatures can be specified.

This enables a remote site, for instance, to ask for a class providing specific methods with
specific types, without any requirements on the name of such a class. The same obviously holds
for mixins. This also respects the “open” nature of mixins that are incomplete subclasses, which
allow an easier dynamic construction of class hierarchies. In a sense, this structural subtyping
philosophy tends to merge the benefits of inheritance with the flexibility of generic programming
[Musser & Stepanov, 1989; Backhouse et al., 1999].

An object can be declared as follows:

var my obj : object C

that declares my_obj as an object of a class with the interface of C. Thus it can be assigned also
an object of a class whose interface is a subtype of the one of C, as hinted above. For instance,
suppose to have the following code:

type class C
m(i : int) : str;
n()

end
;
class CImpl
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m(i : int) : str begin ... end;
n() begin ... end;
p() begin ... end

end
...
var my obj : object C;
my obj := new CImpl

then my_obj can be assigned an instance of class CImpl since its interface is a subtype of C.
Class and mixins names can be used as expressions for creating objects, for specifying a type

(as in the above declaration) and for delivering code to a remote site. Higher-order variables of
kind class and mixin can be declared similarly:

var my class : class C;
var my mixin : mixin M

The above declarations state that my_class (my_mixin) represents a class (mixin) with the same
interface of C (M). Once initialized, these variables can be used where class and mixin names are
expected:

my class := C;
my obj := new my class; # same as new C
my obj := new (my class <> M); # provided that the application is well−typed
my mixin := M;
my obj := new (my class <> my mixin); # same as above

An object declaration such as

var my obj : object M

is correct even when M refers to a mixin definition. This does not mean that an object can be
instantiated from a mixin directly; indeed the following code is rejected by the compiler:

my obj = new M # ERROR: class expression required

However such a declared object can be instantiated with a class created via the application of M to
a (correct) superclass:

my obj = new (M <> C) # OK, provided the application is well typed

Indeed, the declared object will be considered as having the same interface of the mixin M, that is
the interface of a class having all the defined, redefined and expected methods of M.

A simplification adopted in this release of the prototype implementation is that recursive types
are not handled; thus, when compiling a class of the shape

class C
clone c() : object C
begin ... end

end

the xklaim compiler issues an error when compiling the method clone_c saying that the class C
is not defined. This also shows that classes and mixins have to be defined in the order in which
they are needed.

Fields declared in class and mixin definitions are always considered as private so they are ac-
cessible only by the methods of the same definition. This is not a limitation, since a definition can
easily export their values by means of get/set methods. Constructors are not dealt with explicitly
in this release, so a definition has to provide specific methods for field initializations that are to
be called explicitly after object instantiation.

During type-checking, the compiler checks that no name clash among method names occur
either in mixin (and class) definitions and in mixin applications. Actually, this check is not limited
to names of method defined in the interface of a class or a mixin, but extends to all method names
occurring also in types of methods (e.g., a method receiving or returning an object with a specific
interface). The theoretical and design motivations behind this choice can be found in [Bettini et al.,
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2004c], we only hint here that, without rejecting these kind of programs, possible ambiguities
(and thus, possible type errors) can otherwise occur at run-time when substituting a mixin (resp.
a class) variable with an actual mixin (resp. a class) received from the network.

For instance, consider these declarations:

1 class C
2 s() begin ... end
3 end
4 ;
5 mixin M
6 def s() begin ... end ;
7 expect t(a: object C)
8 end

the compiler will report the following error (the other lines try to help in figuring out where the
problem comes from):

6: s, method name occurs in other method type

2: s, declared here

7: occurs in the type of a

7: used from here

Infact, there’s a name clash between the method s defined in the mixin, and the method name s

that occurs in the type of the expected method t that takes a parameter of an object type with the
same interface of the class C that defines a method s.

The same checks is performed also when type checking mixin applications, and can detect
name clashes that would be quite hard to discover manually, as in the following example:

1 mixin CC
2 def m() begin ... end
3 end;
4 class C
5 f( b : object CC ) begin ... end
6 end;
7 mixin M
8 def m() begin ... end
9 end;

10 class WithNameClashApp
11 bang()
12 begin
13 var o : object M;
14 o := new (M <> C)
15 end
16 end

where a name clash is correctly discovered by the compiler:

14: method name clash in mixin application

8: m, method name occurs in other method type

2: m, declared here

5: occurs in the type of b

5: used from here

8.1 Programming examples
In this section we present the implementations of the examples (sketched in O’KLAIM in Section 7)
in X-KLAIM extended with MOMI features. We would like to point out that these are still toy
examples since we do not concentrate on the operations performed in method bodies, but on the
code exchange and integration.
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# this is the mixin actually sent to the remote site
# MyPrinterAgent <: PrinterAgent
mixin MyPrinterAgent
expect print doc(doc : str) : str;
def start agent() : str
begin

return
this.print doc(this.preprocess("my document"))

end;
def preprocess(doc : str) : str
begin

return "preprocessed(" + doc +")"
end

end

rec SendPrinterAgent[server : loc]
declare

var response : str;
var sent mixin : mixin MyPrinterAgent

begin
print "sending printer agent to " + server;
sent mixin := MyPrinterAgent;
out(sent mixin)@server;
in(!response)@server;
print "response is " + response

end

# generic interface with which a printer agent is received
type mixin PrinterAgent

expect print doc(doc : str) : str;
def start agent() : str

end

# the following class provides print doc, so a PrinterAgent can be
# applied to it. Notice that it also provides another method, init()
# that is ignored by the mixin
class LocalPrinter

print doc(doc : str) : str
begin
# real printing code omitted :−)
return "printed " + doc

end;
init()
begin
nil # foo init

end
end

rec ReceivePrinterAgent[]
declare
var rec mixin : mixin PrinterAgent;
var result : str

begin
print "waiting for a PrinterAgent mixin...";
in(!rec mixin)@self;
print "received " + rec mixin;
result := (new rec mixin <> LocalPrinter).start agent();
print "result is " + result;
out(result)@self

end

Listing 8.1: The printer agent example (left: the sender site - the printer client, right: the receiver
site - the printer server).

A mobile printer agent

The programming example shown in this section involves mixin code mobility, and implements
a sort of “dynamic adoption” since the received mixin si then applied to a local parent class at
run-time.

We assume that a site provides printing facilities for local and mobile agents. As hinted in
Section 7 the access to the printer requires a driver that the site itself has to provide to those that
want to print, since it highly depends on the system and on the printer.

Thus, the agent that wants to print is designed as a mixin, that expects a method for actually
printing, print_doc, and defines a method start_agent through which the execution engine can
start its execution. The actual instance of the printing agent is instantiated from a class dynami-
cally generated by applying such mixin to a local superclass that provides the method print_doc

acting as a wrapper for the printer driver.
However the system is willing to accept any agent that has a compatible interface, thus any

mixin that is a subtype to the one used for describing the printing agent. Thus any client wishing
to print on this site can send a mixin that is subtyping compliant to the one expected. In particular
such a mixin can implement finer printing formatting capabilities.

Listing 8.1 presents a possible implementation of the printing client node (on the left) and
of the printer server node (on the right). The printer client sends to the server a mixin
MyPrinterAgent that respects (it is a subtype of) the mixin that the server expects to receive,
PrinterAgent. In particular this mixin will print a document on the printer of the server after
preprocessing it. On the server, once the mixin is received, it is applied to the local (super)class
LocalPrinter, and an object (the agent) is instantiated from the resulting class, and started so
that it can actually print its document. The result of the printing task is then retrieved and sent
back to the client.
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# FSAccessAgentRemote <: FSAccessAgent
class FSAccessAgentRemote
declare

var result : str
copy(src : str) : str
begin

return src
end;
move(src : str) : str
begin

# code for removing the file omitted
return src

end;
start agent() : str
begin

result := "copied " + this.copy("foo");
result := result + ", moved " + this.move("bar");
result := result + ", moved " + this.move("system");
return result

end
end

rec SendFSAgent[server : loc ]
declare

var response : str;
var sent agent : class FSAccessAgentRemote

begin
print "sending fs agent to " + server;
sent agent := FSAccessAgentRemote;
out(sent agent)@server;
in(!response)@server;
print "response is " + response

end

# generic interface for accessing a file system
type class FSAccessAgent

copy(source : str) : str;
move(source : str) : str;
start agent() : str

end

# redefine move so that on critical files performs only a copy
mixin FSSandBox

expect start agent() : str;
expect copy(source : str) : str;
redef move(source : str) : str
begin
if source != "system" then

return next(source)
else

return "not moved(" + this.copy(source) + ")"

endif
end

end

rec ReceiveFSAgent[]
declare
var rec agent : class FSAccessAgent;
var redefined agent : class FSAccessAgent;
var result : str

begin
print "waiting for a FSAgentAgent class...";
in(!rec agent)@self;
redefined agent := FSSandBox <> rec agent;
result := (new redefined agent).start agent();
print "result is " + result;
out(result)@self

end

Listing 8.2: The sand-box example (left: the sender site, right: the receiver site).

We observe that the sender does not actually know the mixin name PrinterAgent: it only
has to be aware of the mixin type expected by the server (remember that in X-KLAIM class and
mixin definition names are only shortcut for their actual types). Furthermore, the sent mixin can
also define more methods than those specified in the receiving site, thanks to the mixin subtyping
relation (described in Section 7.2). This adds a great flexibility to such a system, while hiding these
additional methods to the receiving site (since they are not specified in the receiving interface they
are actually unknown statically to the compiler), and also avoiding dynamic name clashes.

The code for MyPrinterAgent is actually unknown at the server site, and it is actually sent dur-
ing the communication, together with statically built type for the definition of MyPrinterAgent.
This code mobility feature is guaranteed by the KLAVA framework and it is transparent to the
package momi.

A sand-box for mobile agents

This example involves class mobility and “dynamic inheritance” since such a class is used in a
mixin application at the remote site, and some method redefinitions take place.

In this example a site allows mobile agents to access its own file system; however it wants
to enforce some form of restrictions, so that sensible files (e.g., system files) are not modified or
erased. In order to do that the class code of mobile agents that is accept by the site has to respect a
specific interface; then, a local mixin is applied to the received class in order to redefine the move

operation so that, if it acts on a system file, the operation is still allowed but it is transformed in
an innocuous copy operation.

The implementation of this example is in Listing 8.2. Notice that the receiver site redefines
method move trasforming it in copy when it accesses "system", while for all the other files it
simply relies on the previous implementation, by calling next. As expected, the result that is
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delivered to the sender site is:

response is copied foo, moved bar, moved not moved(system)

Let us remark once again, that these are toy examples that basically aim at showing class and
mixin code exchange and dynamic sublcass creations. For instance in a real implementation, the
mixin FSSandBox should not simply rely on copy: a malicious agent could actually remove a file
after copying it from within method copy.

9 Installation
xklaim comes with sources being under the GPL license, thus you have to first unpack the tarball
file xklaim-x.x.x.tar.gz, where x.x.x is the release version, in an appropriate directory. Then,
once you entered that directory, it can be compiled and installed like any other GNU programs,
i.e., with the typical command sequence:

./configure

make

make install

remember that by default this will install the program and all its files starting from the directory
/usr/local, thus you have to be super user in order to do that. Otherwise, should you want to
perform the installation in a different (possibly personal) directory, say /myhome/usr, you have to
pass this option to the configure script:

./configure --prefix=/myhome/usr

Optionally, before make install, you may want to run make check, that tries to compile some
programs preprocessed with xklaim. Notice that you will experience problems if you have a
version of gcc earlier than 3.x, due to a non-standard treatment of using clause for explicitly
inheriting overloaded methods from a super class. So you need to install a more recent version of
gcc.
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