
Electronic Notes in Theoretical Computer Science 82 No. 8 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 20 pages

Extending Java to dynamic object behaviors ?

Lorenzo Bettini Sara Capecchi Betti Venneri

Dipartimento di Sistemi e Informatica, Università di Firenze
Via Lombroso 6/17, 50134 Firenze, Italy

{bettini,capecchi,venneri}@dsi.unifi.it

Abstract

Class inheritance and dynamic binding are the key features of object-oriented pro-
gramming and they permit designing and developing complex systems. However,
standard class inheritance is essentially static and cannot be directly employed for
modeling dynamic object behaviors. In this paper we propose a linguistic extension
of Java, called Dec-Java, that is partially inspired by the decorator design pattern.
This extension permits easily separating the basic features of objects (that are likely
not to change during the application) from their behaviors (that, instead, can be
composed dynamically at run-time). Thus, Dec-Java enables a dynamic extension
and specialization of object responsibilities.

1 Introduction

Object-oriented programming has been successfully used in designing and de-
veloping complex software systems. Specific domain entities can be structured
in classes that play the role of software modules and permit abstracting the
most significant features, possibly hiding their actual representations and im-
plementations. In this context, class inheritance [6,22] is a key feature since it
provides means for code reusability and, from the type perspective, it allows
the programmer to address flexibility in a safe way.

However, class inheritance is essentially a static mechanism: the relation
between a parent and a derived class is established statically and once for all:
should this relation be changed, then the program has to be modified and
recompiled. The only dynamic feature is represented by dynamic binding, i.e.,
the dynamic selection of a specific method implementation according to the
run-time type of an object. This may not suffice for representing the dynamic

? This work has been partially supported by EU within the FET - Global Computing
initiative, project AGILE IST-2001-32747 and by MIUR project NAPOLI. The funding
bodies are not responsible for any use that might be made of the results presented here.

c©2003 Published by Elsevier Science B. V.

Bettini, Capecchi, Venneri

evolution of objects that behave differently depending on their internal state,
the context where they are executing or the entities they interact with.

All these possible behaviors may not be completely predictable in advance
and they are likely to change after the application has already been developed
and used. Thus, apart from the problem of dynamically extending object
behaviors, we have also to consider the problem of application scalability to
new contexts and domains. While trying to forecast all the possible evolutions
of system entities, classes are often designed with many responsibilities, most
of which are basically not used. Furthermore, the number of subclasses tend to
grow dramatically when trying to compose different functionalities into single
modules.

In order to overcome the problems due to the static nature of inheritance,
several solutions have been proposed, that we classify into three groups:

• design patterns [9],

• extensions of class-based languages either with new basic concepts [16] or
with new features [21,18,7],

• solutions inspired by the object-based model [13,11,20].

In this paper we address the above issue in the specific context of class-based
languages, that “form the main stream of object-oriented programming” [1].
The proposed solution is a combination of the three approaches listed above.
We propose an extension of Java [2], based on [5] and called Dec-Java, with a
dynamic object behavior extension/specialization mechanism inspired by the
Decorator design pattern [9]. This new mechanism directly exploits delegation
to achieve part of the dynamic flexibility that is typical of object-based models.

We aim at providing a mechanism that separates in different modules the
basic features of entities (representing their structure) from the additional
ones representing their run-time behaviors. At run-time, these modules can
be dynamically composed in order to manipulate object responsibilities and
behaviors.

Thus, we achieve a dynamic specialization of methods, which is an al-
ternative to standard inheritance. Inheritance lets the programmer redefine
methods belonging to the superclass: a method in the derived class can be
completely overridden (i.e., the superclass implementation is never called from
within the redefined method). Instead, in our solution, methods are really
specialized and not overridden, in the sense that their meaning can only be
extended and not totally twisted (and so methods do not perform unexpected
actions).

Let us observe that method specialization would be very useful in many
situations. Typically many classes in a framework require a method to be spe-
cialized, not redefined: for instance, the method paint in a GUI framework
such as Java AWT, is a callback method that is invoked by the framework
when the contents of a window have to be redrawn on the screen. The pro-
grammer is required to extend this method in order to take care of drawing

2

Bettini, Capecchi, Venneri

the contents that are specific of the application, while standard window items
(menu, toolbars, button, etc.) are drawn by the implementation of the su-
perclasses in the framework. Thus, the programmer has to explicitly call
super.paint() in his redefined method, otherwise the window will not be
correctly redrawn. However, there are no means to require/check this, but
(informally) documenting the framework.

Summarizing, we think that our proposal has two main useful features:

• we achieve a good degree of flexibility in dealing with object run-time be-
haviors, without any substantial type reclassification (as required in other
approaches, see, e.g., [7,19]);

• basic features are (logically and physically) separated from object roles, thus
class hierarchies do not tend to explode in number and size.

Finally, the extended Java here proposed is translated into standard Java.
We remark that the same extension can be applied to other object-oriented
languages, such, e.g., C++, since we do not exploit any specific Java feature.

The paper is organized as follows. Section 2 introduces the new constructs
of Dec-Java, and applies them to the design of a case study. Section 3 discusses
the main features of our approach. Section 4 presents the translation of Dec-
Java programs into standard Java programs. Sections 5 and 6 conclude the
paper by relating our solution to other proposals presented in the literature.

2 New linguistic constructs for extending object behav-
ior

In this section we introduce the new linguistic constructs that permit dynam-
ically extending the behavior of objects. In order to motivate their intro-
duction, we firstly consider a case study: the design of an interactive game
(similar to the classic Cluedo detective game). Then, we define new linguis-
tic constructs that characterize the extended language Dec-Java w.r.t. Java.
Finally, we discuss Dec-Java features by applying the new constructs to our
case study.

2.1 The case study: a Cluedo-like game

We want to design an interactive game that consists in bringing the guilty of a
crime to light. The game starts with an introduction of the characters and an
explanation of the circumstances in which the crime happened. Every player
has:

• a set of ‘skills’ (e.g., observation, agility, etc.) each of which has an as-
sociated score that can be modified during the game (for instance it can
increase because of a good result or decrease due to a specific action);

• a list of suspects: at the beginning this list contains all the characters;
during the game, characters will be dropped from this list one by one until

3

Bettini, Capecchi, Venneri

only the guilty remains;

• a list of weapons among which there is the one used for the crime;

• a list of clues and evidences collected during the game.

The game can be described as a graph of states: when the player gets to a
state, for instance the state LivingRoom, he can interact with the environment
(e.g., open a door, add a clue to the list, etc.). However, the interaction with
the state is not the same for everyone; for instance a player that has a high
observation score can see more details and thus the environment shown to him
is richer in objects than the one shown to others with a lower score. Conversely,
the authority score determines the number of allowed actions and the number
of states that can be reached by the next transition. This way, the behaviors
associated to each state during a game depend on the player’s characteristics
at that specific moment: a state can be seen differently by distinct players
and by the same player in different stages of the game.

We would like to structure the possible states of the game so that they can
be enriched at run-time with new elements, in such a way that the view of
the current state provided to the player can be dynamically built in a smooth
way.

A possible approach would be to widely use “if statements” inside the
state classes, in order to build the right view of the current state according
to the player’s skills and clues. However, this is not an elegant solution and
does not scale well to new versions of the game: to add new clues, skills or
actions it would be necessary to change the class representing the state or to
define a new subclass representing the changes in the game. Conversely, the
use of multiple inheritance would cause an explosion of subclasses in order to
represent all possible states.

Thus, it seems to be difficult to model the situation described above with
the standard features supported by object-oriented programming. Basically,
such mechanisms remain totally static. Our aim is to find a different solution
that permits changing the environment a player is allowed to interact with
in a specific situation, according to his current characteristics. This solution
should also permit easily extending the class hierarchies to represent possible
evolutions of the game (e.g., new states, new characters, new skills, etc.)
without burdening state and player classes.

2.2 The key idea

We propose to introduce three new constructs in order to achieve a dynamic
extension/specialization mechanism of the object behaviors. The basic idea,
applied to our case study, can be summarized as follows: at run time an object
representing a state (called component) is embedded in another object (called
decorator) that associates to the state the behaviors related to the player’s
dynamic situation (Figure 1).

4

Bettini, Capecchi, Venneri

decoratorA
 component decoratorB

 component Component

Fig. 1: Decorator instances.

<<interface>>
State

GardenLivingRoom GardenDoorLocker

Component classes Decorator classes

Fig. 2: Some classes of the hierarchy including both the Component and the
Decorator classes.

A Decorator object’s interface is conforming to the one of the Component
so the power of polymorphism can be exploited (Figure 2): we can assign
to a variable S of type State a Decorator object that embeds an instance of
(a subclass of) State. Every time a client invokes a method m on S that
belongs to the interface State, S forwards the method call to its attribute
component possibly adding code after the forwarded method invocation has
returned. This forwarding is implemented through the delegation mechanism,
i.e., the implicit parameter this is bounded to the Decorator object even after
the forwarding of the method to its attribute component. Decorator objects
can also be recursively nested in order to represent all the evolutions of the
State instances (Figure 1).

These class and object structures are very similar to those proposed in
the design pattern decorator [9] (this is the main reason why we use the
term “decorate”). However, the decorator pattern implements a consultation
mechanism instead of delegation [12]: the implicit parameter this is bound
to the object the method call has been forwarded to. The difference between
delegation and consultation is depicted in Figure 3. We observe that delegation
is a more powerful mechanism since dynamic binding is not lost during the
method call forwarding and permits dynamic object extension as opposed to
simple object composition. As a main consequence, our solution is not merely
an implementation of the decorator pattern. Unfortunately, in the literature,
the term delegation is given different interpretations 1 ; in this paper we will
use delegation with the meaning described above.

In Figure 2 we distinguish two kinds of classes: the first group repre-

1 Indeed, in [9], delegation is used with the meaning of consultation.

5

Bettini, Capecchi, Venneri

A B
delegation

A B thisconsultation

this

Fig. 3: Consultation and delegation mechanisms.

sents the states of the game and implements their basic features (Component
classes); the second group contains classes representing possible evolutions of
states (Decorator classes). The instances of the classes of this second group
will be composed at run time to create a view of the state that fits the dynamic
characteristics of the player.

To this aim we need to define new constructs that allow us to:

• declare that we want to develop a decorator structure based on an interface
I (like the one in Figure 2);

• define Decorator classes whose instances can extend, at run time, behaviours
of states;

• define Component classes whose instances can be decorated.

2.3 Description of Dec-Java

Following the key idea discussed in the previous section, we propose to extend
the language Java by adding the following three new constructs:

(i) decorate I, where I is any Java interface. This statement is used to
develop a class hierarchy like the one in Figure 2, based on I; after
the statement decorate I, it is possible to use the decorator of and
decorated in constructs to define, respectively, Decorator classes and
Component classes.

(ii) class A decorated in I, if A has been defined as a class implementing
I (i.e., it assumes class A implements I and decorate I). Its meaning
consists in that class A is a Component class of I, that is, instances of
class A can be decorated at run time by instances of Decorator classes of
I. Notice that, from a typing point of view, A is a subtype of I.

(iii) class D decorator of I {bodyD}. In bodyD the programmer:
• can add fields and new methods w.r.t. I;
• can implement some methods belonging to I;
• does not write out any constructor: the appropriate constructor will be

6

Bettini, Capecchi, Venneri

automatically generated as shown in Table 1. 2

This construct states that instances of class D can be used to decorate,
at run time, instances of type X where X is either a Component class of
I or another Decorator class of I.

Moreover, a new subtyping relation, namely D is a subtype of I, is
introduced, since the class D is considered as a concrete class imple-
menting I. Notice that not all methods of I need to be implemented in
{bodyD}. However, this does not cause run time errors (e.g., “message-
not-understood”) because instances of D can only be used to decorate
Component instances (or, in turn, Decorator objects) of a class imple-
menting (all methods of) I.

Concerning object creation, an instantiation of a Decorator class can only
be of the shape new D(x) where x is an istance of a class X such that class
X decorated in I or class X decorator of I (nested decorations).

Let us consider now the case of a method invocation m, belonging to the
interface I, on an instance of the Decorator class D:

obj = new D(x);
obj.m();

This invocation will execute firstly x.m, that is the implementation of m in
the class X, and then the specialization of m in D. In the case of X being in
turn a Decorator class of I, this invocation will cause a chain of calls of m,
starting from the Component class back to each Decorator class, according to
the order of the nested decorators. This mechanism of specialized nested calls
will be clear in Section 4, presenting the translation of Dec-Java constructs
into Java.

The extended language so obtained is called Dec-Java.

2.4 Using Dec-Java in the case study

Now we can analize the use of the new constructs by applying them to our
case study. Listing 1 shows the code related to the example introduced in
the previous section. The methods that will be “decorated” (i.e., specialized)
are those declared in the interface State. There is a method, display, for
displaying the state to the player, and a method show places that shows the
next places that can be reached from the current room.

For instance, LivingRoom represents a simple state (i.e., a Component
class of State) that can be decorated by Decorator classes, such as Locker,
LockerKey and Garden in Listing 1.

2 For the sake of simplicity we chose not to deal with constructors defined by the program-
mer in this presentation. However, the extension to explicit constructors is trivial.

7

Bettini, Capecchi, Venneri

public interface State {
void display();
void show places();

}

decorate State

public class LivingRoom implements State {
public void display() { print("LivingRoom"); }
public void show places() { show(BEDROOM); }

}

class LivingRoom decorated in State

public class Locker decorator of State {
private State contents;
private boolean open = false;
public void setOpen() { open = true; }

public void display() {
print("Locker");
if (open)

contents.display();
else

print("closed");
}

}

public class LockerKey decorator of State {
public void display() { print("Locker key"); }

}

public class GardenDoor decorator of State {
private boolean shut = true;
public void setShut(boolean b) { shut = b; }

public void display() { print("Garden door"); }
public void show places() {
if (! shut)

show(GARDEN);
}

}

Listing 1: Some classes from the implementation of the game.

8

Bettini, Capecchi, Venneri

Now the code that is responsible for creating the state for the player, will
create the living room in the following way:

state = new LivingRoom();
gardendoor = new GardenDoor(state);
locker = new Locker(gardendoor);
state = locker;
state.display();
state.show places();

If at some point the player gains a high observation score, then the locker key
will become visible, and so the state will be enriched with that element:

state = new LockerKey(state);
state.display();

Now the player can use the key to open the locker, so the state will be redrawn:

locker.setOpen();
state.display();

Finally, if the player gains a high score in strenght, then he becomes able to
open the garden door, and thus the reachable states will be now more:

gardendoor.setShut(false);
state.show places();

Summarizing, the above solution has the following features:

• the view of the current state that is provided to the player can be manipu-
lated at run time and can be easily kept updated;

• the class hierarchy can be easily extended with new classes for states or
decorators, without affecting the existing ones; a class representing a state
can be designed without worrying about its possible evolutions or different
versions: they can be defined in Decorator classes and composed at run
time.

• the decorators are still independent from the components (i.e., rooms in
the game), thus the actual composition of the room can be reorganized in
different instances of the game;

• the class representing the player is not burdened with the management of
these evolutions.

Finally, let us remark an important design choice: since we are interested
in dynamically changing the behavior of objects, we are only considering meth-
ods that do not return any value, i.e., void methods. Methods that return
values, i.e., functions, can be considered instrumental to methods and for these
methods the standard dynamic binding seems to be sufficient. However, the
extension for dealing with return values is straightforward.

9

Bettini, Capecchi, Venneri

3 Programming with Dec-Java

The new constructs introduced by Dec-Java extend Java to a new program-
ming framework. In this section we discuss its features, its advantages and its
possible uses.

Given a class A that implements an interface I the constructs decorate I
and class A decorated in I permit dynamically extending the behaviors
associated to objects of type A. The essential features of this extension can
be summarized as follows:

• an extended instance may have additional behaviors compared with the
original one (these behaviors are the ones implemented by methods defined
in Decorator classes);

• as regards methods belonging to the interface I, the behavior of an extended
instance consists of the behavior of the original instance plus the added
behavior;

• the extensions can be composed at run-time, by manipulating Decorator
objects.

Thus the dynamic “decoration” of an instance has two effects:

(i) as for the functionalities offered to clients, the instance is extended: its
interface, understood as the set of messages that can be called on it, is
enlarged with the methods of the extension (i.e., methods implemented
in the Decorator classes);

(ii) as for the methods belonging to the interface I, instance’s behavior is
specialized (i.e., its behavior + “decoration”).

The second point is interesting because there is no tool, so far, for automati-
cally programming a real dynamic specialization of methods (as hinted in the
introduction).

3.1 Representing the evolution of instances

Representing the evolution of object behaviors is a crucial problem in the
development of object-oriented software. The objects belonging to the real
world are extremely mutable entities and must be described by means of static
tools such as classes and inheritance. With Dec-Java we can statically design
features that represent object behaviors that can be dynamically composed so
that they can adapt to different run-time contexts. Indeed, instance behaviors
can dynamically change due to several factors:

• an object can be seen in a different way by its clients or must behave dif-
ferently according to a specific run-time context. For instance, a person
is a customer for a shop, a patient for a doctor, a member for an associa-
tion. Every time the instance JohnSmith of class Person gets in touch with
other instances of Person it should behave accordingly. We should avoid

10

Bettini, Capecchi, Venneri

IPrice_Plan
<<Interface>>

Price_Plan1Internet Mobile_Discount Price_Plan2

a.

b.

IPerson
<<Interface>>

Customer PatientMember Person

decorator classes

decorator classes

component class

component classes

Fig. 4: Examples of class hierarchies with Dec-Java.

burdening the class Person with all the functionalities needed to hold all
the roles listed above. The solution is to separate the essential features of a
person, encapsulated in the class Person, from the other features that will
be implemented in Decorator classes (Figure 4.a). The case study presented
in Section 2.3 is another example: the states evolve at run time depending
on the player’s characteristics.

• some of the entities belonging to application domains are extremely dy-
namic so it is very difficult to manage them by means of classes and inher-
itance. For instance, the phone price plans and the related options (dis-
counts, internet, etc.) continuously change. A customer’s plan can be seen
as the result of a specific price plan plus some option combination that can
change according to the customer’s choice. In Figure 4.b we show a solution
that allows a separation of price plans from options implementing them in
classes PricePlan and Decorator classes respectively. The instances of these
classes will be composed at run time according to the customer’s choices
and changes.

11

Bettini, Capecchi, Venneri

3.2 Representing extensions in dedicated modules

The encapsulation of extensions in separated modules (Decorator classes)
makes the design more extensible and the code even more reusable.

First of all, we can design the essential features of instances separately from
their dynamic evolutions (these will be encapsulated in Decorator classes).
This way, there is both a logical (separate modules) and a temporal separation
from the design of basic elements and the design of evolutions and accessories
related to a set of instances: we can avoid mistakes that are usually made when
trying to forecast all possible evolutions of objects (e.g., burdening classes with
too many attributes and methods).

Secondly, class hierarchies can be extended more easily just by adding new
classes (Component classes or Decorator classes) as in the schemes illustrated
in Figure 4.

4 From Dec-Java to Java

In this section we present the semantics of Dec-Java by providing its transla-
tion into plain Java. First of all, we introduce some conventions that we use
in the sequel.

An environment ξ is a pair of two sets (sub-environments), (ξJ , ξD). ξJ

is a set of standard Java class and interface definitions. ξD is a set of triples
of the form 〈I, ID, DI〉, where I is the name of an interface, and ID and DI

are, respectively, the names of the interface and the class generated by the
translation w.r.t. I.

We will use ρ with subscripts for denoting a method’s parame-
ter type, in particular we will denote a list of method signatures as
mj(ρ1 x1, . . . , ρmj

xmj
) j∈J , where J is a set of indexes. When we need to

refer to methods declared in a specific interface I we will informally write
mi(ρ1 x1, . . . , ρmi

xmi
) mi∈interface I . As hinted in the previous section, we

only consider void methods, so we do not need to explicitly represent the
return value type in signatures.

We now define the interpretation function [[]], that, given a Dec-Java defi-
nition and an environment ξ, produces a new environment ξ′. More formally,
[[d]]ξ = ξ′ means that d is a Dec-Java definition (i.e., a class or interface or one
of the three new constructs introduced in the previous section), and ξ′ is pro-
duced by adding to ξ new classes and interfaces derived from the interpretation
of d.

Clearly, the definition of [[]] is trivial in the simple case of d being either a
Java class or interface definition:

[[class A {bodyA}]](ξJ ,ξD) = (ξJ ∪ {class A {bodyA}}, ξD)
[[interface I {bodyI }]](ξJ ,ξD) = (ξJ ∪ {interface I {bodyI }}, ξD)

Now we consider the interesting cases when d is one of the new constructs
introduced by Dec-Java. In order to keep the presentation of the translation

12

Bettini, Capecchi, Venneri

simpler, we do not address error handling explicitly.

4.1 decorate

The construct decorate I is used for initializing a decorator hierarchy struc-
ture based on the interface I. The result is the creation of a new interface
ID, related to I, that contains the same methods as I but with an additional
parameter to implement the delegation mechanism. The original method and
the new method with the same signature but for the additional parameter are
called twin methods. Finally, a new class DI is also created to implement the
specialization of methods automatically. Formally,

[[decorate I]](ξJ ,ξD) = (ξ′J , ξ′D)

where ξ′J and ξ′D are so defined: let interface I {mj (ρ1 x1 , . . . , ρmj xmj)
j∈J} ∈

ξJ then

ξ′J = ξJ ∪ {interface ID {bodyID}} ∪ {class DI implements ID {bodyDI }}
ξ′D = ξD ∪ 〈I, ID, DI〉

where

bodyID = mj(ρ1 x1, . . . , ρmj
xmj

, ID x) j∈J

bodyDI =
ID component;
DI(ID c){component = c; }
mj(ρ1 x1, . . . , ρmj

xmj
, ID x) {component.mj(x1, . . . , xmj

, x); } j∈J

4.2 decorator of

The construct class A decorator of I {bodyA} is used to define Decorator
classes. Then

[[class A decorator of I {bodyA}]](ξJ ,ξD) = (ξ′J , ξD)

where ξ′J is so defined: let 〈I, ID, DI〉 ∈ ξD, then

ξ′J = ξJ ∪ {class A extends DI implements I {bodyA′}}
The Decorator class A can implement (decorate) some of the methods of the
interface I, here denoted by mk

k∈K ; moreover, it can introduce new methods,
here denoted by mj

j∈J .

The body of the new class, bodyA′, is obtained from the original body,
bodyA, according to the transformation presented in Table 1. Informally
speaking, for each method mj a new twin method is generated and the body
of the original method mj is replaced with a call to the twin method, pass-
ing this as the additional parameter (this way we implement the delegation
mechanism).

The body of the twin method mj is obtained by applying the following
substitution σ to the original body:

• each invocation of a new method introduced by A is replaced with a call to

13

Bettini, Capecchi, Venneri

bodyA =
< field definitions >
mj(ρ1 x1, . . . , ρmj xmj) {bodyj} j∈J

mk(ρ1 x1, . . . , ρmk
xmk

) {bodyk} k∈K

bodyA′ =
< field definitions >
A(ID c) {super(c); }
mj(ρ1 x1, . . . , ρmj xmj) {mj(x1, . . . , xmj , this); } j∈J

mj(ρ1 x1, . . . , ρmj xmj , ID x) {σ(bodyj)} j∈J

mi(ρ1 x1, . . . , ρmi xmi) {mi(x1, . . . , xmj , this); } mi∈interface I

mk(ρ1 x1, . . . , ρmk
xmk

, ID x) {super.mk(x1, . . . , xmk
, x);σ(bodyk)} k∈K

where

σ = {x.mi(e1,...,emi ,x)/mi(e1,...,emi)
mi∈interface I , mj(e1,...,emj ,x)/mj(e1,...,emj)

j∈J}

Table 1: Translation of the body of a Decorator class.

the corresponding twin method, passing also the additional parameter x of
type ID;

• each invocation of a method belonging to the interface I is replaced with
the invocation of the corresponding twin method called on the additional
parameter x (again passing x as the additional parameter).

Let us observe that all methods mi belonging to the interface I are imple-
mented in bodyA′; namely, each mi calls its twin method.

Regarding these twin methods, we have to distinguish two cases:

• methods that are not decorated (implemented) by A are simply inherited
from DI ;

• the methods mk (belonging to I and decorated by A) are modified both in
the signature, where the parameter ID x is added, and in the body; namely,
firstly the super method mk of DI is called and then the substitution σ is
applied to the original body.

4.3 decorated in

The construct class A decorated in I adapts an existing class to the dec-
orator hierarchy structure. The transformation of the class is transparent to
the old clients. Formally,

[[class A decorated in I]](ξJ ,ξD) = (ξ′J , ξD)

where ξ′J is so defined: let

• 〈I, ID, DI〉 ∈ ξD and

• class A implements I {bodyA} ∈ ξJ ,

14

Bettini, Capecchi, Venneri

bodyA =
< field definitions >
mj(ρ1 x1, . . . , ρmj xmj) {bodyj} j∈J

mi(ρ1 x1, . . . , ρmi xmi) {body i} mi∈interface I

bodyA′ =
< field definitions >
mj(ρ1 x1, . . . , ρmj xmj) {mj(x1, . . . , xmj , this); } j∈J

mj(ρ1 x1, . . . , ρmj xmj , ID x) {σ(bodyj)} j∈J

mi(ρ1 x1, . . . , ρmi xmi) {mi(x1, . . . , xmj , this); } mi∈interface I

mi(ρ1 x1, . . . , ρmi xmi , ID x) {σ(body i)} mi∈interface I

where

σ = {x.mi(e1,...,emi ,x)/mi(e1,...,emi)
mi∈interface I , mj(e1,...,emj ,x)/mj(e1,...,emj)

j∈J}

Table 2: Translation of the body of an adapted class.

then

ξ′J =
(ξJ − {class A implements I {bodyA}})∪
{class A implements I, ID {bodyA′}}

The body of the modified class, bodyA′, is obtained from the original body,
bodyA, according to the transformation presented in Table 2. Basically, all the
methods originally defined in the class A are inserted in the generated class
and their bodies are changed so that they simply implement the delegation
mechanism by calling the corresponding twin methods. These introduced
twin methods contain the original bodies of the corresponding methods after
applying the same substitution σ described in Section 4.2.

4.4 Translating a program

We define a Dec-Java program as a set of definitions d1 . . . dk where di is either
a Java class or interface definition or one of the added construct (decorate I,
class A decorator of I {bodyA}, class A decorated in I). Thus, a program
can be defined as a sequence of definitions, that is P = d P1 where P1 can be
empty (denoted by nil). So the interpretation of a Dec-Java program can be
defined recursively as follows:

[[nil]]ξ = ξ
[[d P]](ξJ ,ξD) = [[P]](ξ′

J ,ξ′
D) where [[d]](ξJ ,ξD) = (ξ′J , ξ′D)

Finally, let us observe that for any Dec-Java program P , [[P]]ξ = (ξ′J , ξ′D),
where ξ′J is a Java program. Thus, the translation from Dec-Java to Java, here
denoted by 7→, can be simply defined by interpreting a Dec-Java program in
the empty environment and then by taking the obtained ξ′J as the result. More
formally, for any Dec-Java program P ,

P 7→ ξ′J if and only if [[P]](∅,∅) = (ξ′J , ξ′D).

15

Bettini, Capecchi, Venneri

For lack of space, we omit here a complete formalization of static and
dynamic semantics of Dec-Java. These topics will be presented in a future
extended version of this paper, where main theoretical properties are proved,
namely type safety, subject reduction and correctness of the translation into
plain Java.

5 Related works

In order to highlight the main features of our approach we compare our solu-
tion with alternative approaches and mechanisms.

Both Dec-Java and the mixin based approach [4,8,3] encapsulate extensions
in classes making them reusable. A mixin (a class definition parameterized
over the superclass) can be viewed as a function that takes a class as a pa-
rameter and derives a new subclass from it. The same mixin can be applied
to many classes (the operation is known as mixin application), obtaining a
family of subclasses with the same set of methods added and/or redefined. As
for standard inheritance, the main difference with Dec-Java is that when we
compose one or more mixins with a class, a new class, and therefore a new
type, is created, while, in Dec-Java, the composition is moved at instance level
so neither new classes nor new types are created.

We observe that our mechanism of method specialization offers a similar
computational “feel” as the Beta inheritance [15] that is designed to avoid the
replacement of a method by a completely different method in subclasses (as
via standard overriding). A Beta virtual method in a class A can be seen as
a function of its redefined version in a subclass B: an inner statement in the
body of the method in class A calls its redefined version in B. Thus, the inner
call mechanism along a hierarchy of subclasses has the same effect of a chain
of method-invocations along a composition of nested Decorator instances in
Dec-Java. However, there is a basic difference between the two approaches:
Dec-Java decorations are applied to objects and can be dynamically composed
in several ways, while Beta inheritance is a static mechanism concerning class
definition.

More in general we can observe that the dynamic flexibility achieved by
Dec-Java relies in that it enables a run-time decoration of objects, while both
mixin and Beta approaches allow to statically “decorate” code (classes).

Concerning delegation, we remark that the delegation mechanism shown
in Section 2.2 is used by prototype-based languages to share code. Prototype-
based languages [14] drop the notions of class and inheritance to achieve a
higher dynamic flexibility at the cost of the detriment of safety. The lack
of a static type system easily leads to run time errors such as “message-not-
understood”. Because of these problems, prototype-based languages had not
the same success as class-based languages. However, there have been many
attempts to integrate the delegation mechanism in class based languages to
achieve a higher dynamic flexibility [11,13]. These integrations turned out

16

Bettini, Capecchi, Venneri

to be quite hard to use. Our solution can be seen as a partial integration
of delegation in a class-based language: this mechanism is restricted to the
methods belonging to a specific interface. This way, we achieve part of the
dynamic flexibility typical of prototypes (we can decide at run-time which
features are associated to an instance), while maintaining the static safety of
a class-based approach. Moreover, the new constructs are quite easy to use
for a Java programmer.

Regarding the design pattern approach, we have already mentioned that
the mechanism implemented in Dec-Java is inspired by the design pattern
decorator [9]. In fact, the constructs introduced in Dec-Java can be used as
a tool for the automatic development of this pattern whose implementation
requires additional programming. However, the mechanism presented here
goes beyond the functionalities offered by the pattern decorator.

The main difference is that the consultation mechanism is used by the
pattern decorator, while delegation characterizes our solution (see Section 2.2).
As a consequence, dynamic binding can be exploited during the method call
forwarding in Dec-Java, while this is not a feature of the pattern decorator.

Another difference is in the definition of Decorator classes. Our imple-
mentation allows the programmer to add code to methods belonging to the
decorated interface, but this code is automatically inserted after the call of the
same method on the component attribute. In the decorator pattern the code
can be added before or after this call. We took this decision to be sure that
the code of the component method is always executed in order to get a real
specialization for methods belonging to the decorated interface. Of course,
we can extend Dec-Java with mechanisms for explicitly stating whether the
added code has to be executed after or before the component’s method.

Finally, Fickle [7] implements a dynamic object reclassification (i.e., ob-
jects can change class membership at run-time) in order to represent object
evolutions and changes. For example, an instance of class Student can change
class at run time becoming an instance of class Employee. Our approach is dif-
ferent in that we let incrementally add features to a kernel of essential features
that do not change (these are the ones belonging to the Component classes).
In Fickle an object loses the features that were typical of the previous role,
when it is reclassified:

(i) an instance of class Student loses its role if it is reclassified as an
Employee while, a person, could be a student and an employee at the same
time; with Dec-Java we can decorate an instance of class Person with two
Decorator instances, one of type Student and one of type Employee;

(ii) two instances of different classes can be reclassified to the same class
without considering their previous differences (a mechanic and a teacher
should not be reclassified to the same Soldier class during a war). In
our opinion, their skills should be preserved because their performances
as soldiers and their usefulness are highly influenced by their former job.

17

Bettini, Capecchi, Venneri

More in general, Dec-Java is oriented to model a dynamic notion of non-
exclusive roles [10] rather than a dynamic change of mutually exclusive types.

6 Conclusions

We presented an extension of Java, Dec-Java, supporting a dynamic recon-
figuration of objects w.r.t. to their behaviors. Namely, any instance of type
I (interface) can be dynamically decorated by specializing (extending) the
methods declared in I. A prototype implementation of Dec-Java has been
developed in [17] in order to experiment with performance and applicability
of our solution. In particular, this implementation includes other features in
Decorator and Component classes, such as fields, constructors and methods
returning values, that have been avoided in this paper for simplicity. More in
general, the present work is a first step towards a working extension of Java,
exploiting several mechanisms for achieving a reasonable degree of dynamic
flexibility in object manipulation.

The specialization mechanism implemented by Dec-Java and the standard
inheritance are both tools that permit code extension and reuse. Conclud-
ing, we want to point out their main differences, in order to underline the
cases where Dec-Java constructs are a significant alternative to standard in-
heritance.

First of all, inheritance permits specializing and extending classes while
Dec-Java works on instances. As a consequence, when creating a subclass
we also define a new type. Instead, decorating an object at run-time simply
specializes and extends its features without creating a new type. Inheritance is
a static tool that lets us classify objects by means of the subtype relation. This
benefit is lost when we decorate instances at run-time because of the dynamic
nature of this action: we gain flexibility losing the equivalence specialization
= subtyping. Thus, when the extensions are very mutable or numerous and
it is not important to include them in the definition of a type, it is better to
define Decorator classes instead of subclasses.

Secondly, inheritance and Dec-Java implement two different kinds of spe-
cialization, as explained in the introduction; namely, Dec-Java supports a real
extension/specialization of methods. Finally, Dec-Java permits encapsulating
extensions in modules so they can be reused while, using inheritance, if we
want to add the same code to two classes we need to write it for each subclass.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language.
Addison-Wesley, 3rd edition, 2000.

18

Bettini, Capecchi, Venneri

[3] V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins.
In R. Guerraoui, editor, Proceedings ECOOP’99, number 1628 in LCNS, pages
43–66. Springer-Verlag, 1999.

[4] Gilad Bracha and William Cook. Mixin-Based Inheritance. ACM SIGPLAN
Notices, 25(10):303–311, October 1990. OOPSLA ECOOP ’90 Proceedings, N.
Meyrowitz (editor).

[5] Sara Capecchi. Il pattern Decorator per l’estensione dei linguaggi orientati agli
oggetti. Master’s thesis, Dip. Sistemi e Informatica, Università di Firenze, 2002.

[6] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,
and Polymorphism. ACM Computing Surveys, 17(4):471–522, 1985.

[7] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini,
and Paola Giannini. More dynamic object reclassification: Fickle‖. ACM
Transactions on Programming Languages and Systems, 24(2):153–191, 2002.

[8] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc.
POPL ’98, pages 171–183. ACM Press, 1998.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns Elements of Reusable Object Oriented Software. Addison Wesley, 1994.

[10] G. Ghelli and D. Palmerini. Foundations for extensible objects with roles,
extended abstract. In Proc. of the 6th Workshop on Foundations of Object-
Oriented Languages (FOOL), 1999.

[11] JavaSoft. The Glascow Model. 1997. Available at www.javasoft.com.

[12] Gunter Kniesel. Delegation for Java: API or Language Extension? Technical
Report IAI-TR-98-5, University of Bonn, May 1997.

[13] Gunter Kniesel. Darwin - A Unified Model of Sharing for Object-Oriented
Programmning. PhD thesis, University of Bonn, 1999.

[14] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior
in Object Oriented Systems. In Norman Meyrowitz, editor, Proc. of OOPSLA,
volume 22, pages 214–223. ACM Press, 1987.

[15] Ole Lehrmann Madsen, Birger Mller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
1993.

[16] Mira Mezini. Variational Object Oriented Programmnig Beyond Classes and
Inheritance. PhD thesis, College of Electrical Engineering and Computer
Science, University of Siegen, Germany, 1997.

[17] Marco Naldini. Realizzazione di un’estensione di Java verso l’evoluzione
dinamica degli oggetti. Master’s thesis, Dip. Sistemi e Informatica, Università
di Firenze, 2003. Forthcoming.

19

Bettini, Capecchi, Venneri

[18] Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of
Object Behavior Using Context Relations. IEEE Transactions on Software
Engineering, 24(1):79–92, January 1998.

[19] Manuel Serrano. Wide Classes. In R. Guerraoui, editor, Proceedings
ECOOP’99, volume 1628 of LNCS, pages 391–415, Lisbon, Portugal, 1999.
Springer-Verlag.

[20] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing
Programs Without Classes. Lisp and Symbolic Computation, 4(3):223–242, July
1991.

[21] John Vlissides. Subject-Oriented Design. C++ Report, February 1998.

[22] Peter Wegner. Concepts and Paradigms of Object-Oriented Programming.
OOPS Messenger, 1(1):7–87, 1990. Expansion of Oct 4 OOPSLA ’89 Keynote
Talk.

20

