Access Control Mechanisms in KLAIM

Rosario Pugliese

Dipartimento di Sistemi e Informatica Università di Firenze e-mail: pugliese@dsi.unifi.it

Outline of the talk

- Motivations
- Types for Access Control
- Syntax of Secure KLAIM
- The type system:

type equality & canonical forms, subtyping, type inference

- Well-typed nets
- Secure Klaim operational semantics
- Main results

Subject reduction, run-time errors & type safety

– Future work

Security Issues

There can be *attacks* to

• Communication channels

- passive (e.g. traffic analysis)
- active (e.g. message modifications/forging)

• Hosts

- modification of host resources and data
- denial of service

• Mobile Agents

- modification of agent code
- leak of sensible data

Typical defences

Cryptography, Access Control, Activity Monitoring, ...

Aim

To exploit security tools at the level of the programming language

• Type systems have been successfully used to ensure *type safety* of programs since a long time

type safety: there will not be *run-time errors*, e.g. data will be used consistently with their declaration

• In the last few years, some work has been made on exploring and designing type systems for security

e.g. well-typed Java programs (and the corresponding verified bytecode) will never compromise the integrity of certain data

e.g. type systems for the $D\pi$ -calculus (Hennessy-Riely, Yoshida-Hennessy), and for the Ambient calculus (Cardelli-Ghelli-Gordon)

Types for Access Control

- Models for Access Control
 - mechanisms to *specify* the policies for access control
 - mechanisms to *enforce* such policies
- KLAIM Capability-based Type System
 - types as specification of access policies
 - * to express access rights of nodes with respect to other nodes of the net
 - * to describe process intentions (read, write, exec., ...)
 relatively to the different localities they are willing to
 interact with or they want to migrate to
 - (static and dynamic) type checking as enforcement of access policies
 - * only intentions that match access rights are allowed

Example: Access Policy Specification

- Capabilities: r stands for read
 - i stands for **in**
 - o stands for **out**
 - e stands for **eval**
 - n stands for **newloc**
- The access policy specification δ_s of node s

$$\delta_s = s : \{n\} \mapsto \bot,$$

$$s1 : \{i, e\} \mapsto \delta_{s_1},$$

$$s2 : \{r\} \mapsto \bot,$$

$$s3 : \{i, o\} \mapsto \bot$$

• A graphical interpretation: access types are graphs

Syntax of Secure KLAIM

Types

δ	::=	\perp	$(empty \ type)$
		Т	(universal type)
		$\ell:\pi\mapsto\delta$	(locality-labelled arrow type)
		δ_1,δ_2	$(union \ type)$
		ν	$(type \ variable)$
		$\mu u.\delta$	(recursive type)

 $\pi \subseteq \{r, i, o, e, n\} \quad (\pi \neq \emptyset) \qquad \text{set of } capabilities$

Syntax of Secure KLAIM

Nets	N	::=	$s ::_{ ho}^{\delta} P \mid N_1 \parallel N_2$
Processes	P	::= 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$(D\epsilon$	efinitio	on $A(\widetilde{X:\delta}, u: \widetilde{\langle \lambda, \delta \rangle}, \widetilde{x}) \stackrel{def}{=} P)$
Actions	a	::= 	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
AccLists	λ	::=	$[\ell_1:\pi_1,\ldots,\ell_n:\pi_n]$
Tuples	t	::=	$f \mid f, t$
Fields	f	::=	$V \mid x \mid X \mid u : \langle \lambda, \delta \rangle \mid !Z$
Values	V	::=	$v \mid P \mid s : \langle \lambda, \delta angle$
Variables	Z	::=	$x \mid X: \delta \mid u: \langle \lambda, \delta angle$

Type Equality (\cong) & Canonical Forms

 $\ell:\pi\mapsto\delta=\ell:\pi\mapsto\bot\qquad \text{ if }e\not\in\pi$

$$\ell: \pi_1 \mapsto \delta_1, \ell: \pi_2 \mapsto \delta_2 = \begin{cases} \ell: \pi_1 \cup \pi_2 \mapsto \delta_2 & \text{if } e \notin \pi_1 \\ \ell: \pi_1 \cup \pi_2 \mapsto \delta_1 & \text{if } e \notin \pi_2 \\ \ell: \pi_1 \cup \pi_2 \mapsto (\delta_1, \delta_2) & \text{otherwise} \end{cases}$$

$$\mu\nu.\nu = \bot \qquad (divergence)$$

$$\delta[\mu\nu.\delta/\nu] = \mu\nu.\delta \qquad (folding/unfolding)$$

Canonical Forms

 $\delta ::= \bot \mid \top \mid \phi_1, \dots, \phi_n \mid \mu \nu.(\phi_1, \dots, \phi_n) \quad (n \ge 1)$ $\phi ::= \nu \mid \ell : \pi \mapsto \delta$

Some Results

- \cong is decidable
- For any type δ there is a canonical form δ' such that $\delta \cong \delta'$

Subtyping

Types have a hierarchical structure, the *subtype* relation \leq , induced by an *ordering* relation over capabilities \sqsubseteq_{Π}

- $\{i\} \sqsubseteq_{\Pi} \{r\}$ $\pi_2 \sqsubseteq_{\Pi} \pi_1$ if $\pi_1 \subseteq \pi_2$
- Selection of subtyping rules:

 $\frac{\pi_2 \sqsubseteq_{\Pi} \pi_1, \quad \delta_1 \preceq \delta_2}{\ell : \pi_1 \mapsto \delta_1 \preceq \ell : \pi_2 \mapsto \delta_2} \quad \text{(standard on arrow types)}$ $\text{E.g.} \quad s_1 : \{r\} \mapsto \bot \preceq s_1 : \{i\} \mapsto \bot$ $\delta_1 \preceq \delta_1, \delta_2 \quad \text{(monotonicity on union types)}$

 $Main Result \quad \preceq is decidable$

Type Inference

Selection of type inference rules

$$\begin{split} & \gamma \vdash_{\overline{\ell}} P : \delta \\ \hline \gamma \vdash_{\overline{\ell}} \mathbf{out}(t) @\ell'.P : (\delta, \llbracket \ell' \rrbracket_{\ell} : \{o\} \mapsto \bot) \\ & \underline{upd_{\ell}(\gamma, t)} \vdash_{\overline{\ell}} P : \delta \qquad upd_{\ell}(\gamma, t) \vdash_{\overline{\ell}} \delta \searrow_{lv(t)} = \delta' \\ \hline \gamma \vdash_{\overline{\ell}} \mathbf{in}(t) @\ell'.P : (\delta', \llbracket \ell' \rrbracket_{\ell} : \{i\} \mapsto \bot) \\ & \frac{\gamma \vdash_{\overline{\ell}} P : \delta \qquad \gamma \vdash_{\overline{\lfloor \ell' \rrbracket_{\ell}}} Q : \delta'}{\gamma \vdash_{\overline{\ell}} \mathbf{eval}(Q) @\ell'.P : (\delta, \llbracket \ell' \rrbracket_{\ell} : \{e\} \mapsto \delta')} \end{split}$$

 $\gamma \vdash_{\ell} P : \delta$ means that within the type context γ , the intentions of P when located at ℓ are those specified in δ

$$\llbracket \ell' \rrbracket_{\ell} = \begin{cases} \ell & \text{if } \ell' = \texttt{self} \\ \ell' & \text{otherwise} \end{cases}$$

Minimal Type

If $\gamma \vdash_{\ell} P : \delta'$ then there exists a *minimal* type δ such that $\gamma \vdash_{\ell} P : \delta$ and $\delta \preceq \delta''$ for all δ'' such that $\gamma \vdash_{\ell} P : \delta''$

Decidability

For any process P, the existence of a type δ such that $\phi|_{\overline{\ell}} P : \delta$ is decidable Type interpretation

- Process types associate locality variables and sites to functions from sets of capabilities to process types
- Node types (access policies) associate sites to functions from sets of capabilities to node types
- To compare process types and node types, locality variables have to be *interpreted*, i.e. replaced by sites, by using site allocation environments

Well-typed Nets

• A net N_S is well-typed if for any node $s ::_{\rho_s}^{\delta_s} P$, there exists δ' such that $\phi \models_s P : \delta'$ and if δ is a minimal type for P then $[\![\delta]\!]_s^{\Theta_{N_S}} \leq \delta_s.$

Operational Semantics

The operational semantics of *secure* KLAIM differs from that of (untyped) KLAIM in two main aspects

• Pattern-matching has to take into account the (access) types of the fields of its argument tuples

A simple example

Server = out(P)@self.nil $Client = read(!X : \delta)@u_s.X$

If Θ_{N_S} is the interpretation function of the net and δ_c is the type (i.e. access policy) of the site of *Client*, then

Static Type Checking:

$$\llbracket \delta \rrbracket_c^{\Theta_{N_S}} \preceq \delta_c$$

Dynamic Type Checking:

$$\llbracket \delta_P \rrbracket_c^{\Theta_{N_S}} \preceq \llbracket \delta \rrbracket_c^{\Theta_{N_S}}$$

hence

$$\left[\!\left[\delta_P\right]\!\right]_c^{\Theta_{N_S}} \preceq \delta_c$$

• Node creation has to modify the (access) types of the nodes of the net in order to dynamically reconfigure the net

Ingredients

Main Results

Subject Reduction

If N is well–typed and $N \rightarrowtail N'$ then N' is well–typed

Run-time Errors

(e.g. $cap(\mathbf{read}(t)@\ell) = \{r\}$ and $loc(\mathbf{read}(t)@\ell) = \ell$)

Type Safety

If N is well-typed then there is no site s s.t. $N \xrightarrow{s} error$

If N is well-typed and $N \rightarrowtail^* N'$ then there is no site s s.t. $N' \xrightarrow{s} error$

Future Work

- Type system enrichment
 - Dynamic transmission of access rights
 - Behavioural/history dependent types
- Integration of other security mechanisms
 - secure communication and authentication
 - mobile agent protection
 - multilevel security (e.g. role-based access control)
- Extension to open systems
- Implementation of KLAIM security mechanisms (under progress)

Visit the KLAIM site:

http://music.dsi.unifi.it/klaim.html

KLAIM bibliography

- Locality based Linda: programming with explicit localities. R. De Nicola, G. Ferrari, R. Pugliese. *TAPSOFT'97*, LNCS 1214, 1997.
- Coordinating Mobile Agents via Blackboards and Access Rights. R. De Nicola, G. Ferrari, R. Pugliese. *COORDINATION'97*, LNCS 1282, 1997.
- KLAIM: a Kernel Language for Agents Interaction and Mobility.
 R. De Nicola, G. Ferrari, R. Pugliese. *IEEE Transactions on Software Engineering*, Vol.24(5), 1998.
- Interactive Mobile Agents in XKlaim. L. Bettini, R. De Nicola, G. Ferrari, R. Pugliese. *WETICE'98*, IEEE Society Press, 1998.
- Types as Specifications of Access Policies. R. De Nicola, G. Ferrari, R. Pugliese. Secure Internet Programming: Security Issues for Distributed and Mobile Objects, LNCS 1603, 1999.
- **Types for Access Control.** R. De Nicola, G. Ferrari, R. Pugliese, B. Venneri. *Theoretical Computer Science*, 240(1), 2000.
- Structured Nets in Klaim. L. Bettini, M. Loreti, R. Pugliese. ACM SAC'2000, ACM Press, 2000.
- Programming Access Control: The KLAIM Experience. R. De Nicola, G.-L. Ferrari, R. Pugliese. *CONCUR'00*, LNCS 1877, 2000.
- A Modal Logic for Klaim. R. De Nicola, M. Loreti. AMAST'00, LNCS 1816, 2000.
- Klava: a Java Framework for Mobile Code. L. Bettini, R. De Nicola, R. Pugliese. Draft, 2000.

Recursive Types

Recursive types are used for typing migrating recursive processes

•
$$P \stackrel{def}{=} \mathbf{read}(!x) @self.out(x) @l_{next}.eval(P) @l_{next}.nil$$

P first accesses the local tuple space to read a value, then put this value in the tuple space located at l_{next} , and, finally, migrates to l_{next} .

The outcome of the first stage of typing analysis of P is the type

$$\delta_P = \texttt{self} \mapsto \{r\} \mapsto \bot, l_{next} \mapsto \{o, e\} \mapsto \delta_P$$

• Instead, the type of process

$$Q \stackrel{def}{=} \mathbf{read}(!x) @\texttt{self.out}(x) @l_{next}.Q$$

is

$$\delta_Q = \texttt{self} \mapsto \{r\} \mapsto \bot, l_{next} \mapsto \{o\} \mapsto \bot$$

Well-typed Nets

Type interpretation

- Type interpretation function of a net N_S , $\Theta_{N_S} : S \longrightarrow \mathcal{E}$: for all $s \in S$, $\Theta_{N_S}(s) = \rho_s$ if $s ::_{\rho_s}^{\delta_s} P \in N_S$, for some δ_s and P.
- Interpretation [[δ]]^Θ_s of δ at s by Θ:
 a canonical form of the type defined inductively as follows

$$- \llbracket \bot \rrbracket_{s}^{\Theta} = \bot \qquad \llbracket \top \rrbracket_{s}^{\Theta} = \top \qquad \llbracket \nu \rrbracket_{s}^{\Theta} = \nu$$
$$- \llbracket (\ell : \pi \mapsto \delta') \rrbracket_{s}^{\Theta} = \begin{cases} \llbracket \ell \rrbracket^{\rho_{s}} : \pi \mapsto \llbracket \delta' \rrbracket_{\llbracket \ell \rrbracket^{\Theta(s)}}^{\Theta} & \text{if } \llbracket \ell \rrbracket^{\Theta(s)} \in S \\ \ell : \pi \mapsto \delta' & \text{otherwise} \end{cases}$$

$$- [[(\delta_1, \delta_2)]]_s^{\Theta} = [[\delta_1]]_s^{\Theta}, [[\delta_2]]_s^{\Theta}$$
$$- [[(\mu\nu.\delta')]]_s^{\Theta} = \mu\nu.[[\delta']]_s^{\Theta}$$

Well-typed Nets

• A net N_S is *well-typed* if for any node $s ::_{\rho_s}^{\delta_s} P$, there exists δ' such that $\phi|_{\overline{s}} P : \delta'$ and if δ is a minimal type for P then $[\![\delta]\!]_s^{\Theta_{N_S}} \leq \delta_s.$