
Access Control Mechanisms

in Klaim

Rosario Pugliese

Dipartimento di Sistemi e Informatica

Università di Firenze

e-mail: pugliese@dsi.unifi.it

1

Outline of the talk

– Motivations

– Types for Access Control

– Syntax of Secure Klaim

– The type system:

type equality & canonical forms,

subtyping, type inference

– Well-typed nets

– Secure Klaim operational semantics

– Main results

Subject reduction, run-time errors & type safety

– Future work

2

Security Issues

There can be attacks to

• Communication channels

– passive (e.g. traffic analysis)

– active (e.g. message modifications/forging)

• Hosts

– modification of host resources and data

– denial of service

• Mobile Agents

– modification of agent code

– leak of sensible data

Typical defences

Cryptography, Access Control, Activity Monitoring, . . .

3

Aim

To exploit security tools at the level of the programming

language

• Type systems have been successfully used to ensure type

safety of programs since a long time

type safety: there will not be run-time errors, e.g.

data will be used consistently with their declaration

• In the last few years, some work has been made on ex-

ploring and designing type systems for security

e.g. well-typed Java programs (and the correspond-

ing verified bytecode) will never compromise the in-

tegrity of certain data

e.g. type systems for the Dπ-calculus (Hennessy-

Riely, Yoshida-Hennessy), and for the Ambient cal-

culus (Cardelli-Ghelli-Gordon)

4

Types for Access Control

• Models for Access Control

– mechanisms to specify the policies for access control

– mechanisms to enforce such policies

• Klaim Capability-based Type System

– types as specification of access policies

∗ to express access rights of nodes with respect to other

nodes of the net

∗ to describe process intentions (read, write, exec., . . .)

relatively to the different localities they are willing to

interact with or they want to migrate to

– (static and dynamic) type checking as enforcement of

access policies

∗ only intentions that match access rights are allowed

5

Example: Access Policy Specification

• Capabilities: r stands for read

i stands for in

o stands for out

e stands for eval

n stands for newloc

• The access policy specification δs of node s

δs = s : {n} 7→ ⊥,

s1 : {i, e} 7→ δs1 ,

s2 : {r} 7→ ⊥,

s3 : {i, o} 7→ ⊥

• A graphical interpretation: access types are graphs

?

Q
Q

Q
Q

Q
QQs

-HHj
··ee

s s1

s2

s3

i, o

i, e

r

n

6

Syntax of Secure Klaim

Types

δ ::= ⊥ (empty type)

| > (universal type)

| ` : π 7→ δ (locality-labelled arrow type)

| δ1, δ2 (union type)

| ν (type variable)

| µν.δ (recursive type)

π ⊆ {r, i, o, e, n} (π 6= ∅) set of capabilities

7

Syntax of Secure Klaim

Nets N ::= s ::δρ P | N1 ‖ N2

Processes P ::= nil | a.P | P1 | P2 | X

| A〈P̃ , ˜̀, ẽ〉

(Definition A(X̃ : δ, ˜u : 〈λ, δ〉, x̃)
def
= P)

Actions a ::= out(t)@` | in(t)@` | read(t)@`

| eval(P)@` | newloc(˜u : 〈λ, δ〉)

AccLists λ ::= [`1 : π1, . . . , `n : πn]

Tuples t ::= f | f, t

Fields f ::= V | x | X | u : 〈λ, δ〉 | !Z

Values V ::= v | P | s : 〈λ, δ〉

Variables Z ::= x | X : δ | u : 〈λ, δ〉

8

Type Equality (∼=) & Canonical Forms

` : π 7→ δ = ` : π 7→ ⊥ if e 6∈ π

` : π1 7→ δ1, ` : π2 7→ δ2 =





` : π1 ∪ π2 7→ δ2 if e 6∈ π1

` : π1 ∪ π2 7→ δ1 if e 6∈ π2

` : π1 ∪ π2 7→ (δ1, δ2) otherwise

µν.ν = ⊥ (divergence)

δ[µν.δ/ν] = µν.δ (folding/unfolding)

Canonical Forms

δ ::= ⊥ | > | φ1, . . . , φn | µν.(φ1, . . . , φn) (n ≥ 1)

φ ::= ν | ` : π 7→ δ

Some Results

• ∼= is decidable

• For any type δ there is a canonical form δ′ such that

δ∼= δ′

9

Subtyping

Types have a hierarchical structure, the subtype relation

¹, induced by an ordering relation over capabilities v
Π

• {i} v
Π
{r} π2 vΠ

π1 if π1 ⊆ π2

• Selection of subtyping rules:

π2 vΠ
π1, δ1 ¹ δ2

` : π1 7→ δ1 ¹ ` : π2 7→ δ2

(standard on arrow types)

E.g. s1 : {r} 7→ ⊥ ¹ s1 : {i} 7→ ⊥

δ1 ¹ δ1, δ2 (monotonicity on union types)

Main Result ¹ is decidable

10

Type Inference

Selection of type inference rules

γ| ` P : δ

γ| ` out(t)@`′.P : (δ, [[`′]]` : {o} 7→ ⊥)

upd
`
(γ, t)| ` P : δ upd

`
(γ, t)| ` δ↘

lv(t)
= δ′

γ| ` in(t)@`′.P : (δ′, [[`′]]` : {i} 7→ ⊥)

γ| ` P : δ γ| [[`′]]`
Q : δ′

γ| ` eval(Q)@`′.P : (δ, [[`′]]` : {e} 7→ δ′)

γ|
`

P : δ means that within the type context γ, the in-

tentions of P when located at ` are those specified in δ

[[`′]]` =





` if `′ = self

`′ otherwise

11

Type Inference: main results

Minimal Type

If γ|
`

P : δ′ then there exists a minimal type δ such that

γ|
`

P : δ and δ ¹ δ′′ for all δ′′ such that γ|
`

P : δ′′

Decidability

For any process P , the existence of a type δ such that

φ|
`

P : δ is decidable

12

Well-typed Nets

Type interpretation

• Process types associate locality variables and sites to func-
tions from sets of capabilities to process types

• Node types (access policies) associate sites to functions from
sets of capabilities to node types

• To compare process types and node types, locality variables
have to be interpreted, i.e. replaced by sites, by using site
allocation environments

Well-typed Nets

• A net NS is well–typed if for any node s ::δs
ρs

P , there exists
δ′ such that φ| s P : δ′ and if δ is a minimal type for P then

[[δ]]
ΘNS
s ¹ δs.

13

Operational Semantics

The operational semantics of secure Klaim differs from that of
(untyped) Klaim in two main aspects

• Pattern-matching has to take into account the (access) types of
the fields of its argument tuples

A simple example

Server = out(P)@self.nil

Client = read(!X : δ)@us.X

If ΘNS is the interpretation function of the net and δc is the type
(i.e. access policy) of the site of Client, then

Static Type Checking:

[[δ]]
ΘNS
c ¹ δc

Dynamic Type Checking:

[[δP]]
ΘNS
c ¹ [[δ]]

ΘNS
c

hence
[[δP]]

ΘNS
c ¹ δc

• Node creation has to modify the (access) types of the nodes of the
net in order to dynamically reconfigure the net

14

Ingredients

½
½

½
½

½= ?

Z
Z

Z
Z

Z~

¶
¶

¶¶/

S
S

SSw ?

Site Type
Assignment

Access Types

Process Type
Inference

Pattern-Matching

Static (sub)Type
Checking

Dynamic (sub)Type
Checking

15

Main Results

Subject Reduction

If N is well–typed and N Â−→ N ′ then N ′ is well–typed

Run-time Errors

(e.g. cap(read(t)@`) = {r} and loc(read(t)@`) = `)

cap(δ, ρ(loc(a))) 6vΠ cap(a)

s ::δρ a.P
s−→ error

N
s−→ error

N ‖ N ′ s−→ error

N ≡ N ′ N ′ s−→ error

N
s−→ error

Type Safety

If N is well–typed then there is no site s s.t. N
s−→ error

If N is well–typed and N Â−→∗ N ′ then there is no site s s.t.
N ′ s−→ error

16

Future Work

• Type system enrichment

– Dynamic transmission of access rights

– Behavioural/history dependent types

• Integration of other security mechanisms

– secure communication and authentication

– mobile agent protection

– multilevel security (e.g. role-based access control)

• Extension to open systems

• Implementation of Klaim security mechanisms

(under progress)

Visit the Klaim site:

http://music.dsi.unifi.it/klaim.html

17

Klaim bibliography

• Locality based Linda: programming with explicit localities. R. De

Nicola, G. Ferrari, R. Pugliese. TAPSOFT’97, LNCS 1214, 1997.

• Coordinating Mobile Agents via Blackboards and Access Rights.

R. De Nicola, G. Ferrari, R. Pugliese. COORDINATION’97, LNCS 1282,

1997.

• Klaim: a Kernel Language for Agents Interaction and Mobility.

R. De Nicola, G. Ferrari, R. Pugliese. IEEE Transactions on Software Engi-

neering, Vol.24(5), 1998.

• Interactive Mobile Agents in XKlaim. L. Bettini, R. De Nicola, G. Fer-

rari, R. Pugliese. WETICE’98, IEEE Society Press, 1998.

• Types as Specifications of Access Policies. R. De Nicola, G. Ferrari,

R. Pugliese. Secure Internet Programming: Security Issues for Distributed

and Mobile Objects, LNCS 1603, 1999.

• Types for Access Control. R. De Nicola, G. Ferrari, R. Pugliese, B. Ven-

neri. Theoretical Computer Science, 240(1), 2000.

• Structured Nets in Klaim. L. Bettini, M. Loreti, R. Pugliese. ACM

SAC’2000, ACM Press, 2000.

• Programming Access Control: The Klaim Experience. R. De Nicola,

G.-L. Ferrari, R. Pugliese. CONCUR’00, LNCS 1877, 2000.

• A Modal Logic for Klaim. R. De Nicola, M. Loreti. AMAST’00, LNCS

1816, 2000.

• Klava: a Java Framework for Mobile Code. L. Bettini, R. De Nicola,

R. Pugliese. Draft, 2000.

18

Recursive Types

Recursive types are used for typing migrating recursive

processes

• P
def
= read(! x)@self.out(x)@lnext.eval(P)@lnext.nil

P first accesses the local tuple space to read a value,

then put this value in the tuple space located at lnext,

and, finally, migrates to lnext.

The outcome of the first stage of typing analysis of P is

the type

δP = self 7→ {r} 7→ ⊥, lnext 7→ {o, e} 7→ δP

• Instead, the type of process

Q
def
= read(! x)@self.out(x)@lnext.Q

is

δQ = self 7→ {r} 7→ ⊥, lnext 7→ {o} 7→ ⊥

19

Well-typed Nets

Type interpretation

• Type interpretation function of a net NS , ΘNS
: S −→ E :

for all s ∈ S, ΘNS
(s) = ρs if s ::δs

ρs
P ∈ NS , for some δs and

P .

• Interpretation [[δ]]Θs of δ at s by Θ:

a canonical form of the type defined inductively as follows

– [[⊥]]Θs = ⊥ [[>]]Θs = > [[ν]]Θs = ν

– [[(` : π 7→ δ′)]]Θs =





[[`]]ρs : π 7→ [[δ′]]Θ
[[`]]Θ(s) if [[`]]Θ(s) ∈ S

` : π 7→ δ′ otherwise

– [[(δ1, δ2)]]Θs = [[δ1]]Θs , [[δ2]]Θs

– [[(µν.δ′)]]Θs = µν.[[δ′]]Θs

Well-typed Nets

• A net NS is well–typed if for any node s ::δs
ρs

P , there exists
δ′ such that φ| s P : δ′ and if δ is a minimal type for P then

[[δ]]
ΘNS
s ¹ δs.

20

