Access Control Mechanisms

in KLAIM

Rosario Pugliese

Dipartimento di Sistemi e Informatica
Universita di Firenze

e-mail: pugliese@dsi.unifi.it

Outline of the talk'

Motivations
Types for Access Control
Syntax of Secure KLAIM

The type system:
type equality & canonical forms,

subtyping, type inference
Well-typed nets
Secure KLAIM operational semantics

Main results

Subject reduction, run-time errors & type safety

Future work

Security Issues'

There can be attacks to

e Communication channels

— passive (e.g. traffic analysis)

— active (e.g. message modifications/forging)

e Hosts

— modification of host resources and data

— denial of service

e Mobile Agents

— modification of agent code

— leak of sensible data

Typical defences

Cryptography, Access Control, Activity Monitoring, ...

To exploit security tools at the level of the programming

language

e Type systems have been successfully used to ensure type

safety of programs since a long time

type safety: there will not be run-time errors, e.g.

data will be used consistently with their declaration

e In the last few years, some work has been made on ex-

ploring and designing type systems for security

e.g. well-typed Java programs (and the correspond-
ing verified bytecode) will never compromise the in-

tegrity of certain data

e.g. type systems for the Dm-calculus (Hennessy-
Riely, Yoshida-Hennessy), and for the Ambient cal-
culus (Cardelli-Ghelli-Gordon)

Types for Access Control'

o Models for Access Control

— mechanisms to specify the policies for access control

— mechanisms to enforce such policies

o KLAIM Capability-based Type System

— types as specification of access policies

* to express access rights of nodes with respect to other
nodes of the net

* to describe process intentions (read, write, exec., ...)
relatively to the different localities they are willing to

interact with or they want to migrate to

— (static and dynamic) type checking as enforcement of

access policies

* only intentions that match access rights are allowed

Example: Access Policy Speciﬁcation'

o Clapabilities: r stands for read
1 stands for in
o stands for out
e stands for eval

n stands for newloc

e The access policy specification d, of node s
5, = s:{n)e L,
s1:{i,e} — 6.,
$2: {r} o L,

s3:{i,0} — L

e A graphical interpretation: access types are graphs

7@3 1, €

Y

S1

S2

Syntax of Secure KLAIMI

m C{r,i,0,e,n}

(m #0)

(empty type)

(universal type)
(locality-labelled arrow type)
(union type)

(type variable)

(

recursive type)

set of capabilities

Syntax of Secure KLAIMI

Nets N = s:0P | Ni| N
Processess P == nil | aP | P |P | X
| APLE

(Definition A()?:/(S, u :/<\)T, 0),) = P)

Actions a == out(t)@l | in(¢)@Q¢ | read(t)@l

| eval(P)@Q/ | newloc(u: ()\,§))

AccLists A == [l 7, ..., 0y 0 T
Tuples t = f|ft

Fields f o= Vixz|X]|u: (N |!Z
Values V. o u= wv]|P|s: ()0

Variables Z = x| X :0|u:(\J)

Type Equality (=) & Canonical Forms'

C.m—o=0:m— L ifedmn

p
{:m Umg — 09 if e & m;

C:my— 01,0 :ma— 02 =< 0:7m Umg — & if e & 9

\ ¢:m Umg — (61,02) otherwise

uv.y = 1

(divergence)

Olpv.d /v = pv.d (folding /unfolding)

Canonical Forms

5= LI T [0t bn | mw(r,.r60) (0> 1)
¢pr=v|l:m—)

Some Results

e = is decidable

e For any type 0 there is a canonical form ¢ such that

52

Subtyping I

Types have a hierarchical structure, the subtype relation

=, induced by an ordering relation over capabilities C

o Ui} Eytr} T Ly m if m Comy

o Selection of subtyping rules:

T E, T, 01 209

(standard on arrow types)
€I7T1|—>(51j€177'2|—>52

Eg s1:{r}— 1L =s:{i}— L

01 = 01, 09 (monotonicity on union types)

Main Result < 1is decidable

Type Inference I

Selection of type inference rules

Y P
Yl out()Ql P (5,['] : {0} — L)

upd, (v, t)l P : 6 upd, (7, 0) b 0Ny,) = &
Y- in(H)@0 P - (0", [€'] : {i} — L)

Y P: 0 V}W Q:¢
V- eval(Q)Ql P : (6,[¢], : {e} — 0')

7|7 P : 0 means that within the type context ~, the in-

tentions of P when located at ¢ are those specified in o

" { (0 = self
E:

A otherwise

Type Inference: main results'

Minimal Type

If v} P : ¢’ then there exists a minimal type ¢ such that

Y~ P : 6 and § < 6" for all 0" such that vy}~ P : 9"

Decidability

For any process P, the existence of a type 0 such that

¢t P : ¢ is decidable

Well-typed Nets I

Type interpretation

e Process types associate locality variables and sites to func-

tions from sets of capabilities to process types

e Node types (access policies) associate sites to functions from

sets of capabilities to node types

e To compare process types and node types, locality variables
have to be interpreted, i.e. replaced by sites, by using site

allocation environments

Well-typed Nets

e A net Ng is well-typed if for any node s 335p§ P, there exists
¢' such that ¢|— P : ' and if J is a minimal type for P then

16150 <4,

Operational Semantics I

The operational semantics of secure KLAIM differs from that of
(untyped) KLAIM in two main aspects

e Pattern-matching has to take into account the (access) types of
the fields of its argument tuples

A simple example

Server = out(P)Qself.nil
Client = read(!X :6§)Qu,. X

If O, is the interpretation function of the net and J. is the type
(i.e. access policy) of the site of Client, then

Static Type Checking:

[6]Ns <6,

Dynamic Type Checking:

[6p] < [6]N

hence
[6p ™S =< 6.

e Node creation has to modify the (access) types of the nodes of the
net in order to dynamically reconfigure the net

Ingredients I

/ Access Types \

Process Type Site Type Pattern-Matching
Inference A?lment
Static (sub)Type Dynamig (sub)Type

Checking Checking

Main Results I

Subject Reduction

If N is well-typed and N =— N’ then N’ is well-typed

Run-time Errors

(e.g. cap(read(t)@l) = {r} and loc(read(t)@f) = /)

cap(9, p(loc(a))) &y cap(a)

S
S ::2 a.P —— error

S
N — error

N || N = error

S

N=N N —= error

S
N —— error

Type Safety

If N is well-typed then there is no site s s.t. N —— error

If N is well-typed and N =—* N’ then there is no site s s.t.

S
N' — error

Future Work'

e Type system enrichment

— Dynamic transmission of access rights

— Behavioural /history dependent types

e Integration of other security mechanisms

— secure communication and authentication
— mobile agent protection

— multilevel security (e.g. role-based access control)

e Extension to open systems

e Implementation of KLAIM security mechanisms

(under progress)

Visit the KLAIM site:

http://music.dsi.unifi.it/klaim.html

KLAIM bibliography I

Locality based Linda: programming with explicit localities. R. De
Nicola, G. Ferrari, R. Pugliese. TAPSOFT’97, LNCS 1214, 1997.

Coordinating Mobile Agents via Blackboards and Access Rights.
R. De Nicola, G. Ferrari, R. Pugliese. COORDINATION’97, LNCS 1282,
1997.

Kroaiv: a Kernel Language for Agents Interaction and Mobility.
R. De Nicola, G. Ferrari, R. Pugliese. IEEE Transactions on Software Engi-
neering, Vol.24(5), 1998.

Interactive Mobile Agents in XKlaim. L. Bettini, R. De Nicola, G. Fer-
rari, R. Pugliese. WETICE’98, IEEE Society Press, 1998.

Types as Specifications of Access Policies. R. De Nicola, G. Ferrari,

R. Pugliese. Secure Internet Programming: Security Issues for Distributed
and Mobile Objects, LNCS 1603, 1999.

Types for Access Control. R. De Nicola, G. Ferrari, R. Pugliese, B. Ven-
neri. Theoretical Computer Science, 240(1), 2000.

Structured Nets in Klaim. L. Bettini, M. Loreti, R. Pugliese. ACM
SAC’2000, ACM Press, 2000.

Programming Access Control: The KraimMm Experience. R. De Nicola,
G.-L. Ferrari, R. Pugliese. CONCUR’00, LNCS 1877, 2000.

A Modal Logic for Klaim. R. De Nicola, M. Loreti. AMAST’00, LNCS
1816, 2000.

Klava: a Java Framework for Mobile Code. L. Bettini, R. De Nicola,
R. Pugliese. Draft, 2000.

Recursive Types I

Recursive types are used for typing migrating recursive

Processes

pY read(! z)Qself.out(z)Ql,,.;.eval(P)Ql,.,;.nil

P first accesses the local tuple space to read a value,
then put this value in the tuple space located at [,

and, finally, migrates to [,ez:.

The outcome of the first stage of typing analysis of P is
the type

op =self — {r} — L Lo — {0,€} — 0p

Instead, the type of process
Q déf read(! x)@self.out(z)Ql,q..Q

1S

og = self — {r}— L [— {0} — L

Well-typed Nets I

Type interpretation

o Type interpretation function of a net Ng, Ong : S — &

for all s € S, Ong(s) = ps if s ::/(ZZ P € Ng, for some 5 and
P.

o Interpretation [6]9 of § at s by O:

a canonical form of the type defined inductively as follows
- [L]9=1 [TIP=T [v]?=v

[i mm 16T pe 110 €5

0:m— ¢ otherwise

MWWHWW?{

— [(01,02) [= 16112, 0212

= [(p.6) 10 = p.[0']2

Well-typed Nets

e A net Ng is well-typed if for any node s ::2@ P, there exists
¢' such that ¢|— P : " and if J is a minimal type for P then

1619 < 6.

