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Security Issues'

There can be attacks to

e Communication channels

— passive (e.g. traffic analysis)

— active (e.g. message modifications/forging)

e Hosts

— modification of host resources and data

— denial of service

e Mobile Agents

— modification of agent code

— leak of sensible data

Typical defences

Cryptography, Access Control, Activity Monitoring, ...



To exploit security tools at the level of the programming

language

e Type systems have been successfully used to ensure type

safety of programs since a long time

type safety: there will not be run-time errors, e.g.

data will be used consistently with their declaration

e In the last few years, some work has been made on ex-

ploring and designing type systems for security

e.g. well-typed Java programs (and the correspond-
ing verified bytecode) will never compromise the in-

tegrity of certain data

e.g. type systems for the Dm-calculus (Hennessy-
Riely, Yoshida-Hennessy), and for the Ambient cal-
culus (Cardelli-Ghelli-Gordon)



Types for Access Control'

o Models for Access Control

— mechanisms to specify the policies for access control

— mechanisms to enforce such policies

o KLAIM Capability-based Type System

— types as specification of access policies

* to express access rights of nodes with respect to other
nodes of the net

* to describe process intentions (read, write, exec., ...)
relatively to the different localities they are willing to

interact with or they want to migrate to

— (static and dynamic) type checking as enforcement of

access policies

* only intentions that match access rights are allowed



Example: Access Policy Speciﬁcation'

o Clapabilities: r stands for read
1 stands for in
o stands for out
e stands for eval

n stands for newloc

e The access policy specification d, of node s
5, = s:{n)e L,
s1:{i,e} — 6.,
$2: {r} o L,

s3:{i,0} — L

e A graphical interpretation: access types are graphs

7@3 1, €

Y

S1

S2




Syntax of Secure KLAIMI

m C{r,i,0,e,n}

(m #0)

(empty type)

(universal type)
(locality-labelled arrow type)
(union type)

(type variable)

(

recursive type)

set of capabilities



Syntax of Secure KLAIMI

Nets N = s:0P | Ni| N
Processess P == nil | aP | P |P | X
| APLE

(Definition A()?:/(S, u :/<\)T, 0), ) = P)

Actions a == out(t)@l | in(¢)@Q¢ | read(t)@l

| eval(P)@Q/ | newloc(u: ()\,§))

AccLists A == [l 7, ..., 0y 0 T
Tuples t = f|ft

Fields f o= Vixz|X]|u: (N |!Z
Values V. o u= wv]|P|s: ()0

Variables Z = x| X :0|u:(\J)



Type Equality (=) & Canonical Forms'

C.m—o=0:m— L ifedmn

p
{:m Umg — 09 if e & m;

C:my— 01,0 :ma— 02 =< 0:7m Umg — & if e & 9

\ ¢:m Umg — (61,02) otherwise

uv.y = 1

(divergence)

Olpv.d /v = pv.d (folding /unfolding)

Canonical Forms

5= LI T [0t bn | mw(r,.r60) (0> 1)
¢pr=v|l:m—)

Some Results

e = is decidable

e For any type 0 there is a canonical form ¢ such that

52



Subtyping I

Types have a hierarchical structure, the subtype relation

=, induced by an ordering relation over capabilities C

o Ui} Eytr} T Ly m if m Comy

o Selection of subtyping rules:

T E, T, 01 209

(standard on arrow types)
€I7T1|—>(51j€177'2|—>52

Eg s1:{r}— 1L =s:{i}— L

01 = 01, 09 (monotonicity on union types)

Main Result < 1is decidable




Type Inference I

Selection of type inference rules

Y P
Yl out()Ql P (5,[ '] : {0} — L)

upd, (v, t)l P : 6 upd, (7, 0) b 0Ny, ) = &
Y- in(H)@0 P - (0", [ €' ] : {i} — L)

Y P: 0 V}W Q:¢
V- eval(Q)Ql P : (6,[ ¢ ], : {e} — 0')

7|7 P : 0 means that within the type context ~, the in-

tentions of P when located at ¢ are those specified in o

" { (0 = self
E:

A otherwise



Type Inference: main results'

Minimal Type

If v} P : ¢’ then there exists a minimal type ¢ such that

Y~ P : 6 and § < 6" for all 0" such that vy}~ P : 9"

Decidability

For any process P, the existence of a type 0 such that

¢t P : ¢ is decidable



Well-typed Nets I

Type interpretation

e Process types associate locality variables and sites to func-

tions from sets of capabilities to process types

e Node types (access policies) associate sites to functions from

sets of capabilities to node types

e To compare process types and node types, locality variables
have to be interpreted, i.e. replaced by sites, by using site

allocation environments

Well-typed Nets

e A net Ng is well-typed if for any node s 335p§ P, there exists
¢' such that ¢|— P : ' and if J is a minimal type for P then

16150 <4,



Operational Semantics I

The operational semantics of secure KLAIM differs from that of
(untyped) KLAIM in two main aspects

e Pattern-matching has to take into account the (access) types of
the fields of its argument tuples

A simple example

Server = out(P)Qself.nil
Client = read(!X :6§)Qu,. X

If O, is the interpretation function of the net and J. is the type
(i.e. access policy) of the site of Client, then

Static Type Checking:

[6]Ns <6,

Dynamic Type Checking:

[6p ] < [6]N

hence
[6p ™S =< 6.

e Node creation has to modify the (access) types of the nodes of the
net in order to dynamically reconfigure the net



Ingredients I

/ Access Types \

Process Type Site Type Pattern-Matching
Inference A?lment
Static (sub)Type Dynamig (sub)Type

Checking Checking



Main Results I

Subject Reduction

If N is well-typed and N =— N’ then N’ is well-typed

Run-time Errors

(e.g. cap(read(t)@l) = {r} and loc(read(t)@f) = /)

cap(9, p(loc(a))) &y cap(a)

S
S ::2 a.P —— error

S
N — error

N || N = error

S

N=N N —= error

S
N —— error

Type Safety

If N is well-typed then there is no site s s.t. N —— error

If N is well-typed and N =—* N’ then there is no site s s.t.

S
N' — error



Future Work'

e Type system enrichment

— Dynamic transmission of access rights

— Behavioural /history dependent types

e Integration of other security mechanisms

— secure communication and authentication
— mobile agent protection

— multilevel security (e.g. role-based access control)

e Extension to open systems

e Implementation of KLAIM security mechanisms

(under progress)

Visit the KLAIM site:

http://music.dsi.unifi.it/klaim.html
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Recursive Types I

Recursive types are used for typing migrating recursive

Processes

pY read(! z)Qself.out(z)Ql,,.;.eval(P)Ql,.,;.nil

P first accesses the local tuple space to read a value,
then put this value in the tuple space located at [,

and, finally, migrates to [,ez:.

The outcome of the first stage of typing analysis of P is
the type

op =self — {r} — L Lo — {0,€} — 0p

Instead, the type of process
Q déf read(! x)@self.out(z)Ql,q..Q

1S

og = self — {r}— L [ — {0} — L



Well-typed Nets I

Type interpretation

o Type interpretation function of a net Ng, Ong : S — &

for all s € S, Ong(s) = ps if s ::/(ZZ P € Ng, for some 5 and
P.

o Interpretation [ 6]9 of § at s by O:

a canonical form of the type defined inductively as follows
- [L]9=1 [TIP=T [v]?=v

[ i mm 16T pe 110 €5

0:m— ¢ otherwise

MWWHWW?{

— [(01,02) [ = 16112, 0212

= [(p.6) 10 = p.[0' ]2

Well-typed Nets

e A net Ng is well-typed if for any node s ::2@ P, there exists
¢' such that ¢|— P : " and if J is a minimal type for P then

1619 < 6.



